In this paper we have proposed a non- linear mathematical model for a wind turbine. The objective function maximizes the power of the wind turbine and the constraints are related to the rotor and tower costs. Rotor diameter and hub height are the variables which affect on power of the wind turbine, so we have considered them as decision variable in our mathematical model. By increasing rotor diameter and hub height the power of the turbine will increase but the costs don’t let the infinitive increase in rotor diameter and height. The model applied for a typical case study and the results of solving the model for it have shown in the paper.
Detecting pulmonary cancers at early stages is difficult but crucial for patient survival. Therefore, it is essential to develop an intelligent, autonomous, and accurate lung cancer detection system that shows great reliability compared to previous systems and research. In this study, we have developed an innovative lung cancer detection system known as the Hybrid Lung Cancer Stage Classifier and Diagnosis Model (Hybrid-LCSCDM). This system simplifies the complex task of diagnosing lung cancer by categorizing patients into three classes: normal, benign, and malignant, by analyzing computed tomography (CT) scans using a two-part approach: First, feature extraction is conducted using a pre-trained model called VGG-16 for detecting key features in lung CT scans indicative of cancer. Second, these features are then classified using a machine learning technique called XGBoost, which sorts the scans into three categories. A dataset, IQ-OTH/NCCD - Lung Cancer, is used to train and evaluate the proposed model to show its effectiveness. The dataset consists of the three aforementioned classes containing 1190 images. Our suggested strategy achieved an overall accuracy of 98.54%, while the classification precision among the three classes was 98.63%. Considering the accuracy, recall, and precision as well as the F1-score evaluation metrics, the results indicated that when using solely computed tomography scans, the proposed (Hybrid-LCSCDM) model outperforms all previously published models.
Current automatic writing feedback systems cannot distinguish between different discourse elements in students' writing. This is a problem because, without this ability, the guidance provided by these systems is too general for what students want to achieve on arrival. This is cause for concern because automated writing feedback systems are a great tool for combating student writing declines. According to the National Assessment of Educational Progress, less than 30 percent of high school graduates are gifted writers. If we can improve the automatic writing feedback system, we can improve the quality of student writing and stop the decline of skilled writers among students. Solutions to this problem have been proposed, the most popular being the fine-tuning of bidirectional encoder representations from Transformers models that recognize various utterance elements in student written assignments. However, these methods have their drawbacks. For example, these methods do not compare the strengths and weaknesses of different models, and these solutions encourage training models over sequences (sentences) rather than entire articles. In this article, I'm redesigning the Persuasive Essays for Rating, Selecting, and Understanding Argumentative and Discourse Elements corpus so that models can be trained for the entire article, and I've included Transformers, the Long Document Transformer's bidirectional encoder representation, and the Generative Improving a pre trained Transformer 2 model for utterance classification in the context of a named entity recognition token classification problem. Overall, the bi-directional encoder representation of the Transformers model railway using my sequence-merging preprocessing method outperforms the standard model by 17% and 41% in overall accuracy. I also found that the Long Document Transformer model performed the best in utterance classification with an overall f-1 score of 54%. However, the increase in validation loss from 0.54 to 0.79 indicates that the model is overfitting. Some improvements can still be made due to model overfittings, such as B. Implementation of early stopping techniques and further examples of rare utterance elements during training.
Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential featuresfrom electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integratesa feature extraction module, densely connected residual block (DCRB), longshort-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decisionmaking processes, making it a valuable tool for stakeholders in the electricity sector.
In this paper the dynamic behavior of linear induction motor is described by a mathematical model taking into account the end effects and the core losses. The need for such a model rises due to the complexity of linear induction motors electromagnetic field theory. The end affects are modeled by introducing a speed dependent scale factor to the magnetizing inductance and series resistance in the d-axis equivalent circuit. Simulation results are presented to show the validity of the model during both no-load and sudden load change intervals. This model can also be used directly in simulation researches for linear induction motor vector control drive systems.
Unmanned aerial vehicles (UAV), have enormous important application in many fields. Quanser three degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model reference adaptive controller has been used, employing the grate approximation capability of the neural network to match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law and stable neural network updating law are determined using Lyapunov theory.
The occurrence of Sub-Synchronous Resonance (SSR) phenomena can be attributed to the interaction that takes place between wind turbine generators and series-compensated transmission lines. The Doubly-Fed Induction Generator (DFIG) is widely recognized as a prevalent generator form employed in wind energy conversion systems. The present paper commences with an extensive exposition on modal analysis techniques employed in a series of compensated wind farms featuring Doubly Fed Induction Generators (DFIGs). The system model encompasses various components, including the aerodynamics of a wind turbine, an induction generator characterized by a sixth-order model, a second- order two-mass shaft system, a series compensated transmission line described by a fourth-order model, controllers for the Rotor-Side Converter (RSC) and the Grid-Side Converter (GSC) represented by an eighth-order model, and a first-order DC-link model. The technique of eigenvalue-based SSR analysis is extensively utilized in various academic and research domains. The eigenvalue technique depends on the initial conditions of state variables to yield an accurate outcome. The non-iterative approach, previously employed for the computation of initial values of the state variables, has exhibited issues with convergence, lack of accuracy, and excessive computational time. The comparative study evaluates the time-domain simulation outcomes under different wind speeds and compensation levels, along side the eigenvalue analysis conducted using both the suggested and non-iterative methods. This comparative analysis is conducted to illustrate the proposed approach efficacy and precision. The results indicate that the eigenvalue analysis conducted using the proposed technique exhibits more accuracy, as it aligns with the findings of the simulations across all of the investigated instances. The process of validation is executed with the MATLAB program. Within the context of the investigation, it has been found that increasing compensation levels while simultaneously decreasing wind speed leads to system instability. Therefore, modifying the compensation level by the current wind speed is advisable.
A practical method of robust generalized predictive controller (GPC) application is developed using a combination of Ziegler-Nichols type functions relating the GPC controller parameters to a first order with time delay process parameters and a model matching controller. The GPC controller and the model matching controller are used in a master/slave configuration, with the GPC as the master controller and the model matching controller as the slave controller. The model matching controller parameters are selected to obtain the desired overall performance. The effectiveness of the proposed control method is tested by simulation using a mathematical model of the boiler super heater temperature process.
This paper focuses on the vibration suppression of a half-car model by using a modified PID controller. Mostly, car vibrations could result from some road disturbances, such as bumps or potholes transmitted to a car body. The proposed controller consists of three main components as in the case of the conventional PID controller which are (Proportional, Integral, and Derivative) but the difference is in the positions of these components in the control loop system. Initially, a linear half-car suspension system is modeled in two forms passive and active, the activation process occurred using a controlled hydraulic actuator. Thereafter, the two systems have been simulated using MATLAB/Simulink software in order to demonstrate the dynamic response. A comparison between conventional and modified PID controllers has been carried out. The resulting dynamic response of the half-car model obtained from the simulation process was improved when using a modified PID controller compared with the conventional PID controller. Moreover, the efficiency and performance of the half-car model suspension have been significantly enhanced by using the proposed controller. Thus, achieving high vehicle stability and ride comfort.
Nowadays, it is difficult to imagine a powerful algorithm of cryptography that can continue cryptanalyzing and attacking without the use of unconventional techniques. Although some of the substitution algorithms are old, such as Vigen`ere, Alberti, and Trithemius ciphers, they are considered powerful and cannot be broken. In this paper we produce the novelty algorithm, by using of biological computation as an unconventional search tool combined with an uninhibited analysis method is the vertical probabilistic model, that makes attacking and analyzing these ciphers possible and very easy to transform the problem from a complex to a linear one, which is a novelty achievement. The letters of the encoded message are processed in the form of segments of equal length, to report the available hardware components. Each letter codon represents a region of the memory strand, and the letters calculated for it are symbolized within the probabilistic model so that each pair has a triple encoding: the first is given as a memory strand encoding and the others are its complement in the sticker encoding; These encodings differ from one region to another. The solution space is calculated and then the parallel search process begins. Some memory complexities are excluded even though they are within the solution paths formed, because the natural language does not contain its sequences. The precision of the solution and the time consuming of access to it depend on the length of the processed text, and the precision of the solution is often inversely proportional to the speed of access to it. As an average of the time spent to reach the solution, a text with a length of 200 cipher characters needs approximately 15 minutes to give 98% of the correct components of the specific hardware. The aim of the paper is to transform OTP substitution analysis from a NP problem to a O(nm) problem, which makes it easier to find solutions to it easily with the available capabilities and to develop methods that are harnessed to attack difficult and powerful ciphers that differ in class and type from the OTP polyalphabetic substitution ciphers.
Electrical issues such as old wires and faulty connections are the most common causes of arc faults. Arc faults cause electrical fires by generating high temperatures and discharging molten metal. Every year, such fires cause a considerable deal of destruction and loss. This paper proposes a new method for detecting residential series and parallel arc faults. A simulation model for the arc is employed to simulate the arc faults in series and parallel circuits. The fault features are then retrieved using a signal processing approach called Discrete Wavelet Transform (DWT) designed in MATLAB/Simulink based on the fault detection algorithm. Then db2 and one level were found appropriate mother and level of wavelet transform for extracting arc-fault features. MATLAB Simulink was used to build and simulate the arc-fault model.
This paper present a method to enhance the firefly algorithm by coupling with a local search. The constructed technique is applied to identify the solar parameters model where the method has been proved its ability to obtain the photovoltaic parameters model. Standard firefly algorithm (FA), electromagnetism-like (EM) algorithm, and electromagnetism-like without local (EMW) search algorithm all are compared with the suggested method to test its capability to solve this model.
The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller I. I NTRODUCTION Suspensions systems can be classified into three types are (passive, simi active and active). Figs. 1, 2 and 3 below shows the three types of Quarter car suspension system and hydraulic actuator position in each type.[1] Fig. 1 Passive Quarter Car Model Fig. 2 Simi-Active Quarter Car Model Fig. 3 Active Quarter Car Model In passive suspension systems the main parts are springs and hydraulic dumpers. The main job of these dumpers is to decrease the road profile and vibration effects into driver and passenger’s cabin. In active suspension system there are three parts under spring mass (body of car), spring, dumper and hydraulic actuator are connected in parallel. In this paper an additional parts is added to passive suspension system in parallel with springs and dumpers called a hydraulic actuator to get an active suspension system. This hydraulic actuator is a nonlinear part and it is controlled by spool valve. The mechanism of this actuator is to decrease the road profile and vibration from passive suspension system to get more comfortable riding. By using PID controller trained by Particle Swarm Optimization (PSO) to find optimal values of proportional, divertive and Quarter Car Active Suspension System Control Using PID Controller tuned by PSO Wissam H. Al-Mutar Turki Y. Abdalla Electrical Eng. Computer Eng. University of Basrah University of Basrah Basrah. Iraq. Basrah. Iraq. Spring Mass Unpring Mass K Kt C Ct Spring Mass Unpring K K C C Spring Mass Unpring Mass K Kt C F Ct اﻟﻤﺠﻠﺔ اﻟﻌﺮاﻗﻴﺔ ﻟﻠﻬﻨﺪﺳﺔ اﻟﻜﻬﺮﺑﺎﺋﻴﺔ واﻻﻟﻜﺘﺮوﻧﻴﺔ Iraq J. Electrical and Electronic Engineering ﻡﺠﻠﺪ 11 ، اﻟﻌﺪد 2 ، 2015 Vol.11 No.2 , 2015 Active suspension, PSO, PID controller, quarter car
Facial retouching, also referred to as digital retouching, is the process of modifying or enhancing facial characteristics in digital images or photographs. While it can be a valuable technique for fixing flaws or achieving a desired visual appeal, it also gives rise to ethical considerations. This study involves categorizing genuine and retouched facial images from the standard ND-IIITD retouched faces dataset using a transfer learning methodology. The impact of different primary optimization algorithms—specifically Adam, RMSprop, and Adadelta—utilized in conjunction with a fine-tuned ResNet50 model is examined to assess potential enhancements in classification effectiveness. Our proposed transfer learning ResNet50 model demonstrates superior performance compared to other existing approaches, particularly when the RMSprop and Adam optimizers are employed in the fine-tuning process. By training the transfer learning ResNet50 model on the ND-IIITD retouched faces dataset with the ”ImageNet” weight, we achieve a validation accuracy of 98.76%, a training accuracy of 98.32%, and an overall accuracy of 98.52% for classifying real and retouched faces in just 20 epochs. Comparative analysis indicates that the choice of optimizer during the fine-tuning of the transfer learning ResNet50 model can further enhance the classification accuracy.
A Matlab/Simulink model for the Finite Control Set Model Predictive current Control FCS-MPC based on cost function optimization, with current limit constraints for four-leg VSI is presented in this paper, as a new control algorithm. The algorithm selects the switching states that produce minimum error between the reference currents and the predicted currents via optimization process, and apply the corresponding switching control signals to the inverter switches. The new algorithm also implements current constraints which excludes any switching state that produces currents above the desired references. Therefore, the system response is enhanced since there is no overshoots or deviations from references. Comparison is made between the Space Vector Pulse Width Modulation SVPWM and the FCS-MPC control strategies for the same load conditions. The results show the superiority of the new control strategy with observed reduction in inverter output voltage THD by 10% which makes the FCS-MPC strategy more preferable for loads that requires less harmonics distortion.
In this paper, explicit model predictive controller is applied to an inverted pendulum apparatus. Explicit solutions to constrained linear model predictive controller can be computed by solving multi-parametric quadratic programs. The solution is a piecewise affine function, which can be evaluated at each sample to obtain the optimal control law. The on-line computation effort is restricted to a table-lookup. This admits implementation on low cost hardware at high sampling frequencies in real-time systems with high reliability and low software complexity. This is useful for systems with limited power and CPU resources.
In this paper, an analysis of performance acceleration of an external laser source (ELS) model based polymer fiber gratings (PFGs) by reducing the turn-on delay time (TDelay) is successfully investigated numerically by optimizing model parameters. In contrast to all previous studies that relied either on approximate or experimental equations, the analysis was based on an exact numerical formula. The analysis is based on the investigation of the effect of diode injected current (Iin j), temperature (T), recombination rate coefficients (i.e. Anr, B, and C), and optical feedback (OFB) level. Results have demonstrated that by optimizing model parameters the Delay can be controlled and reduced effectively.
Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management optimization problem, which consists of the cost function and its constraints. The cost function describes the required control objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's energy converters, which are represented by the torque of the vehicle components.
Mathematical modeling is very effective method to investigate interaction between insulin and glucose. In this paper, a new mathematical model for insulin-glucose regulation system is introduced based on well-known Lokta-Volterra model. Chaos is a common property in complex biological systems in the previous studies. The results here are in accordance with previous ones and indicating that insulin-glucose regulating system has many dynamics in different situations. The overall result of this paper may be helpful for better understanding of diabetes mellitus regulation system including diseases such as hyperinsulinemia and Type1 DM.
Automatic signature verification methods play a significant role in providing a secure and authenticated handwritten signature in many applications, to prevent forgery problems, specifically institutions of finance, and transections of legal papers, etc. There are two types of handwritten signature verification methods: online verification (dynamic) and offline verification (static) methods. Besides, signature verification approaches can be categorized into two styles: writer dependent (WD), and writer independent (WI) styles. Offline signature verification methods demands a high representation features for the signature image. However, lots of studies have been proposed for WI offline signature verification. Yet, there is necessity to improve the overall accuracy measurements. Therefore, a proved solution in this paper is depended on deep learning via convolutional neural network (CNN) for signature verification and optimize the overall accuracy measurements. The introduced model is trained on English signature dataset. For model evaluation, the deployed model is utilized to make predictions on new data of Arabic signature dataset to classify whether the signature is real or forged. The overall obtained accuracy is 95.36% based on validation dataset.
This paper studies the impact of climate change on the electricity consumption by means of a fuzzy regression approach. The climate factors which have been considered in this paper are humidity and temperature, whereas the simultaneous effect of these two climate factors is considered. The impacts of other climate variables, like the wind, with a minor effect on energy consumption are ignored. The innovation which applies in this paper is the division of the year into two parts by using the temperature-day graph in the year. To index the humidity, data of the minimum humidity per day are used. For temperature, the maximum temperature of the first part of the year (warm days) and the minimum of the second part (cold days) are used. The indicator for the consumption is the daily peak load. The model results show high sensitivity to the temperature but low sensitivity to the humidity. Moreover, it is concluded that the model structure cannot be the same and for the cold par additional variables such as gas consumption should be considered.
In this paper, we present a new programmable chaotic circuit based on the dynamical chaotic system introduced by E. Lorenz. The design and realization of the model are accomplished by using a programmable logic controller (PLC). The system can be modeled and realized with a structured texted. The nonlinear differential equations of Lorenz model are solved numerically. The generated chaotic signal by using PLC is applied to a single- phase induction motor via a variable frequency drive to create a chaotic perturbation in the experiments of liquid mixing. Colorization liquid experiments shows that the generated chaotic motion effectively makes an enhancement of the mixing process in the stirred-tank mixer model in our laboratory.
This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.
In this paper, enhancing dynamic performance in power systems through load frequency control (LFC) is explored across diverse operating scenarios. A new Neural Network Model Predictive Controller (NN-MPC) specifically tailored for two-zone load frequency power systems is presented. ” Make your paper more scientific. The NN-MPC marries the predictive accuracy of neural networks with the robust capabilities of model predictive control, employing the nonlinear Levenberg-Marquardt method for optimization. Utilizing local area error deviation as feedback, the proposed controller’s efficacy is tested against a spectrum of operational conditions and systemic variations. Comparative simulations with a Fuzzy Logic Controller (FLC) reveal the proposed NN-MPC’s superior performance, underscoring its potential as a formidable solution in power system regulation.
Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.
In this paper the identification and control for the impressed current cathodic protection (ICCP) system are present. Firstly, an identification model using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) was implemented. The identification model consists of four inputs which are the aeration flow rates, the temperature, conductivity, and protection current, and one output that represented by the structure-to-electrolyte potential. The used data taken from an experimental CP system model, type impressed current submerged sample pipe carbon steel. Secondly, two control techniques are used. The first control technique use a conventional Proportional-Integral-Derivative (PID) controller, while the second is the fuzzy controller. The PID controller can be applied to control ICCP system and quite easy to implement. But, it required very fine tuning of its parameters based on the desired value. Furthermore, it needed time response more than fuzzy controller to track reference voltage. So the fuzzy controller has a faster and better response.
This research presents a technique of an electro optic effect for enhancement the an accomplishment of an electro optics switch using Mat lab simulation program . this technique includes design a mathematical model for evaluate the effect of different parameters such as refractive index (n), distance of separation between waveguides (d), length of electrodes (L), relative refractive index (Δn), and switching voltage (V ), on the DC bias voltage of an electro optics switch. In this work the investigation of performance of an electro optics switch by analysis of an effect of distance between waveguides and the changing of refractive index on the bias voltage (V), and which optimizes when the wavelength is from 1300 into 1550 nm. Finally, an electro-optic active switch is designed and optimized, using the analytical model and which considers important device in the modern optical communication system.
Brain tumors are collections of abnormal tissues within the brain. The regular function of the brain may be affected as it grows within the region of the skull. Brain tumors are critical for improving treatment options and patient survival rates to prevent and treat them. The diagnosis of cancer utilizing manual approaches for numerous magnetic resonance imaging (MRI) images is the most complex and time-consuming task. Brain tumor segmentation must be carried out automatically. A proposed strategy for brain tumor segmentation is developed in this paper. For this purpose, images are segmented based on region-based and edge-based. Brain tumor segmentation 2020 (BraTS2020) dataset is utilized in this study. A comparative analysis of the segmentation of images using the edge-based and region-based approach with U-Net with ResNet50 encoder, architecture is performed. The edge-based segmentation model performed better in all performance metrics compared to the region-based segmentation model and the edge-based model achieved the dice loss score of 0. 008768, IoU score of 0. 7542, f1 score of 0. 9870, the accuracy of 0. 9935, the precision of 0. 9852, recall of 0. 9888, and specificity of 0. 9951.
Face recognition technique is an automatic approach for recognizing a person from digital images using mathematical interpolation as matrices for these images. It can be adopted to realize facial appearance in the situations of different poses, facial expressions, ageing and other changes. This paper presents efficient face recognition model based on the integration of image preprocessing, Co-occurrence Matrix of Local Average Binary Pattern (CMLABP) and Principle Component Analysis (PCA) methods respectively. The proposed model can be used to compare the input image with existing database images in order to display or record the citizen information such as name, surname, birth date, etc. The recognition rate of the model is better than 99%. Accordingly, the proposed face recognition system is functional for criminal investigations. Furthermore, it has been compared with other reported works in the literature using diverse databases and training images. .
Audio encryption has gained popularity in a variety of fields including education, banking over the phone, military, and private audio conferences. Data encryption algorithms are necessary for processing and sending sensitive information in the context of secure speech conversations. In recent years, the importance of security in any communications system has increased. To transfer data securely, a variety of methods have been used. Chaotic system-based encryption is one of the most significant encryption methods used in the field of security. Chaos-based communication is a promising application of chaos theory and nonlinear dynamics. In this research, a chaotic algorithm for the new chaotic chameleon system was proposed, studied, and implemented. The chameleon chaotic system has been preferred to be employed because it has the property of changing from self-excited (SA) to hidden-attractor (HA) which increases the complexity of the system dynamics and gives strength to the encryption algorithm. A chaotic chameleon system is one in which, depending on the parameter values, the chaotic attractor alternates between being a hidden attractor and a self-excited attractor. This is an important feature, so it is preferable to use it in cryptography compared to other types of chaotic systems. This model was first implemented using a Field Programmable Gate Array (FPGA), which is the first time it has been implemented in practical applications. The chameleon system model was implemented using MATLAB Simulink and the Xilinx System Generator model. Self-excited, hidden, and coexisting attractors are shown in the proposed system. Vivado software was used to validate the designs, and Xilinx ZedBoard Zynq-7000 FPGA was used to implement them. The dynamic behavior of the proposed chaotic system was also studied and analysis methods, including phase portrait, bifurcation diagrams, and Lyapunov exponents. Assessing the quality of the suggested method by doing analyses of many quality measures, including correlation, differential signal-to-noise ratio (SNR), entropy, histogram analysis, and spectral density plot. The numerical analyses and simulation results demonstrate how well the suggested method performs in terms of security against different types of cryptographic assaults.
Vehicular network security had spanned and covered a wide range of security related issues. However solar energy harvesting Road Side Unit (RSU) security was not defined clearly, it is this aspect that is considered in this paper. In this work, we will suggest an RSU security model to protect it against different internal and external threats. The main goal is to protect RSU specific data (needed for its operation) as well as its functionality and accessibility. The suggested RSU security model must responds to many objectives, it should ensure that the administrative information exchanged is correct and undiscoverable (information authenticity and privacy), the source (e.g., VANET server) is who he claims to be (message integrity and source authentication) and the system is robust and available (using Intrusion Detection System (IDS)). In this paper, we suggest many techniques to strength RSU security and they were prototyped using an experimental model based on Ubicom IP2022 network processor development kit .
As a key type of mobile robot, the two-wheel mobile robot has been developed rapidly for varied domestic, health, and industrial applications due to human-like movement and balancing characteristics based on the inverted pendulum theory. This paper presents a developed Two-Wheel Self-Balanced Robot (TWSBR) model under road disturbance effects and simulated using MATLAB Simscape Multibody. The considered physical-mechanical structure of the proposed TWSBS is connected with a Simulink controller scheme by employing physical signal converters to describe the system dynamics efficiently. Through the Simscape environment, the TWSBR motion is visualized and effectively analyzed without the need for complicated analysis of the associated mathematical model. Besides, 3D visualization of real-time behavior for the implemented TWSBR plant model is displayed by Simulink Mechanics Explorer. Robot balancing and stability are achieved by utilizing Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers' approaches considering specific control targets. A comparative study and evaluation of both controllers are conducted to verify the robustness and road disturbance rejection. The realized performance and robustness of developed controllers are observed by varying object-carrying loaded up on mechanical structure layers during robot motion. In particular, the objective weight is loaded on the robot layers (top, middle, and bottom) during disturbance situations. The achieved findings may have the potential to extend the deployment of using TWSBRs in the varied important application.
This work deals with the simulation model of multi-machines system as cold rolling mill is considered as application. Drivers of rolling system are a set of DC motors, which have extend applications in factories as aluminum rolling. Interconnection of multi DC motors in such a way that they are synchronized in their rotational speed. In cold rolling, the accuracy of the strip exit thickness is a very important factors. To realize accuracy in the strip exit thickness, Automatic Gauge Control system is used. In this paper MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results were presented to verify proposed model of cold rolling mill.
In this paper two theoretical models have been considered for the prediction of path loss for two different districts in Mosul city, using MATLAB 7.4 program. The Walfisch-Ikegami (W-I) model for uniform heights and similar buildings in the Karama district . The other model is Okumura-Hata (OH) model applied for irregular and dissimilar buildings in the Almajmoa'a district. The information buildings heights are obtained from the civil Eng. Depart. in Mosul university. In this paper it can be shown that The effect of distance in regular area (karama) on path loss is about 10 dB larger than irregular area (Almajmoa'a), and The effect of varying antenna height in regular area (karama) on path loss is about 7 dB greater than irregular area (Almajmoa'a) for 40 meter variation.
In this paper a neurofuzzy control structure is presented and used for controlling the two-link robot manipulator. A neurofuzzy networks are constructed for both the controller and for identification model of robot manipulator. The performance of the proposed structure is studied by simulation. Different operating conditions are considered. Results of simulation show good performance for the proposed control structure.
This paper presents a developed algorithm for reliability sensitivity analysis of engineering networks. Reliability Modeling is proposed for the Iraqi Kurdistan Regional Power Network (IKRPN) using Symbolic Reliability function of the model. The written Pascal code for the developed algorithm finds efficiently path sets and cut sets of the model. Reliability and Unreliability indices are found. The sensitivity of these indices are found with respect to the variation of the network’s elements reliabilities
Breast cancer is one of the most critical diseases suffered by many people around the world, making it the most common medical risk they will face. This disease is considered the leading cause of death around the world, and early detection is difficult. In the field of healthcare, where early diagnosis based on machine learning (ML) helps save patients’ lives from the risks of diseases, better-performing diagnostic procedures are crucial. ML models have been used to improve the effectiveness of early diagnosis. In this paper, we proposed a new feature selection method that combines two filter methods, Pearson correlation and mutual information (PC-MI), to analyse the correlation amongst features and then select important features before passing them to a classification model. Our method is capable of early breast cancer prediction and depends on a soft voting classifier that combines a certain set of ML models (decision tree, logistic regression and support vector machine) to produce one model that carries the strengths of the models that have been combined, yielding the best prediction accuracy. Our work is evaluated by using the Wisconsin Diagnostic Breast Cancer datasets. The proposed methodology outperforms previous work, achieving 99.3% accuracy, an F1 score of 0.9922, a recall of 0.9846, a precision of 1 and an AUC of 0.9923. Furthermore, the accuracy of 10-fold cross-validation is 98.2%.
The Leader detecting and following are one of the main challenges in designing a leader-follower multi-robot system, in addition to the challenge of achieving the formation between the robots, while tracking the leader. The biological system is one of the main sources of inspiration for understanding and designing such multi-robot systems, especially, the aggregations that follow an external stimulus such as light. In this paper, a multi-robot system in which the robots are following a spotlight is designed based on the behavior of the Artemia aggregations. Three models are designed: kinematic and two dynamic models. The kinematic model reveals the light attraction behavior of the Artemia aggregations. The dynamic model will be derived based on the newton equation of forces and its parameters are evaluated by two methods: first, a direct method based on the physical structure of the robot and, second, the Least Square Parameter Estimation method. Several experiments are implemented in order to check the success of the three proposed systems and compare their performance. The experiments are divided into three scenarios of simulation according to three paths: the straight line, circle, zigzag path. The V-Rep software has been used for the simulation and the results appeared the success of the proposed system and the high performance of tracking the spotlight and achieving the flock formation, especially the dynamic models.
The Intelligent Control of Vibration Energy Harvesting system is presented in this paper. The harvesting systems use a me- chanical vibration to generate electrical energy in a suitable form for use. Proportional-Integrated-derivative controller and Fuzzy Logic controller have been suggested; their parameters are optimized using a new heuristic algorithm, the Camel Trav- eling Algorithm(CTA). The proposed circuit Simulink model was constructed in Matlab facilities, and the model was tested under various operating conditions. The results of the simulation using the CTA was compared with two other methods.
Data-intensive science is a critical science paradigm that interferes with all other sciences. Data mining (DM) is a powerful and useful technology with wide potential users focusing on important meaningful patterns and discovers a new knowledge from a collected dataset. Any predictive task in DM uses some attribute to classify an unknown class. Classification algorithms are a class of prominent mathematical techniques in DM. Constructing a model is the core aspect of such algorithms. However, their performance highly depends on the algorithm behavior upon manipulating data. Focusing on binarazaition as an approach for preprocessing, this paper analysis and evaluates different classification algorithms when construct a model based on accuracy in the classification task. The Mixed National Institute of Standards and Technology (MNIST) handwritten digits dataset provided by Yann LeCun has been used in evaluation. The paper focuses on machine learning approaches for handwritten digits detection. Machine learning establishes classification methods, such as K-Nearest Neighbor(KNN), Decision Tree (DT), and Neural Networks (NN). Results showed that the knowledge-based method, i.e. NN algorithm, is more accurate in determining the digits as it reduces the error rate. The implication of this evaluation is providing essential insights for computer scientists and practitioners for choosing the suitable DM technique that fit with their data.
In this work, a new flux controlled memristor circuit is presented. It provides a tool to emulate the pinched hysteresis loop. When driven the memristor by a bipolar periodic signal, the memristor exhibits a “pinched hysteresis loop” in the voltage-current plane and starting from some critical frequency, the hysteresis lobe area decreases monotonically as the excitation frequency increases, the pinched hysteresis loop shrinks to a single-valued function when the frequency tends to infinity. The design model numerically simulated and the physical implementation is achieved by using a field programmable analog array (FPAA). The circuit can be modeled and implemented with a changeable nonlinear function blocks and fixed main system blocks. The simplicity of the specific design method makes this proposed model be a very engaging option for the design of the memristor .
To gain insight into complex biological endocrine glucose-insulin regulatory system where the interactions of components of the metabolic system and time-delay inherent in the biological system give rise to complex dynamics. The modeling has increased interest and importance in physiological research and enhanced the medical treatment protocols. This brief contains a new model using time delay differential equations, which give an accurate result by utilizing two explicit time delays. The bifurcation analysis has been conducted to find the main system parameters bifurcation values and corresponding system behaviors. The results found consistent with the biological experiments results.
In this paper, a model of PI-speed control current-driven induction motor based on indirect field oriented control (IFOC) is addressed. To assess the complex dynamics of a system, different dynamical properties, such as stability of equilibrium points, bifurcation diagrams, Lyapunov exponents spectrum, and phase portraits are characterized. It is found that the induction motor model exhibits chaotic behaviors when its parameters fall into a certain region. Small variations of PI parameters and load torque affect the dynamics and stability of this electric machine. A chaotic attractor has been observed and the speed of the motor oscillates chaotically. Numerical simulation results are validating the theoretical analysis.
The identification of system parameters plays an essential role in system modeling and control. This paper presents a parameter estimation for a permanent magnetic DC motor using the simulink design optimization method. The parameter estimation may be represented as an optimization problem. Firstly, the initial values of the DC motor parameters are extracted using the dynamic model through measuring the values of voltage, current, and speed of the motor. Then, these values are used as an initial value for simulink design optimization. The experimentally input- output data can be collected using a suggested microcontroller based circuit that will be used later for estimating the DC motor parameters by building a simulink model. Two optimization algorithms are used, the pattern search and the nonlinear least square. The results show that the nonlinear least square algorithm gives a more accurate result that almost approaches to the actual measured speed response of the motor. )
This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.
In this paper, we develop an analytical energy efficiency model using dual switched branch diversity receiver in wireless sensor networks in fading environments. To adapt energy efficiency of sensor node to channel variations, the optimal packet length at the data link layer is considered. Within this model, the energy efficiency can be effectively improved for switch-and-stay combiner (SSC) receiver with optimal switching threshold. Moreover, to improve energy efficiency, we use error control of Bose-Chaudhuri-Hochquengh (BCH) coding for SSC-BPSK receiver node compared to one of non-diversity NCFSK receiver of sensor node. The results show that the BCH code for channel coding can improve the energy efficiency significantly for long link distance and various values of high energy consumptions over Rayleigh fading channel.
A model reference adaptive control of condenser and deaerator of steam power plant is presented. A fuzzy-neural identification is constructed as an integral part of the fuzzy-neural controller. Both forward and inverse identification is presented. In the controller implementation, the indirect controller with propagating the error through the fuzzy-neural identifier based on Back Propagating Through Time (BPTT) learning algorithm as well as inverse control structure are proposed. Simulation results are achieved using Multi Input-Multi output (MIMO) type of fuzzy-neural network. Robustness of the plant is detected by including several tests and observations.
In this paper, a new method is proposed for people tracking using the human skeleton provided by the Kinect sensor, Our method is based on skeleton data, which includes the coordinate value of each joint in the human body. For data classification, the Support Vector Machine (SVM) and Random Forest techniques are used. To achieve this goal, 14 classes of movements are defined, using the Kinect Sensor to extract data containing 46 features and then using them to train the classification models. The system was tested on 12 subjects, each of whom performed 14 movements in each experiment. Experiment results show that the best average accuracy is 90.2 % for the SVM model and 99 % for the Random forest model. From the experiments, we concluded that the best distance between the Kinect sensor and the human body is one meter.
Low-quality data can be dangerous for the machine learning models, especially in crucial situations. Some large-scale datasets have low-quality data and false labels, also, datasets with images type probably have artifacts and biases from measurement errors. So, automatic algorithms that are able to recognize low-quality data are needed. In this paper, Shapley Value is used, a metric for evaluation of data, to quantify the value of training data to the performance of a classification algorithm in a large ImageNet dataset. We specify the success of data Shapley in recognizing low-quality against precious data for classification. We figure out that model performance is increased when low Shapley values are removed, whilst classification model performance is declined when high Shapley values are removed. Moreover, there were more true labels in high-Shapley value data and more mislabeled samples in low-Shapley value. Results represent that mislabeled or poor-quality images are in low Shapley value and valuable data for classification are in high Shapley value.
In this article, a robust control technique for 2-DOF helicopter system is presented. The 2-DOF helicopter system is 2 inputs and 2 outputs system that is suffering from the high nonlinearity and strong coupling. This paper focuses on design a simple, robust, and optimal controller for the helicopter system. Moreover, The proposed control method takes into account effects of the measurement noise in the closed loop system that effect on the performance of controller as well as the external disturbance. The proposed controller combines low pass filter with robust PID controller to ensure good tracking performance with high robustness. A low pass filter and PID controller are designed based H∞weighted mixed sensitivity. Nonlinear dynamic model of 2-DOF helicopter system linearized and then decoupled into pitch and yaw models. Finally, proposed controller applied for each model. Matlab program is used to check effectiveness the proposed control method. Simulation results show that the proposed controllers has best tracking performance with no overshot and the smallest settling time with respect to standard H∞and optimized PID controller.
Preserving privacy and security plays a key role in allowing each component in the healthcare system to access control and gain privileges for services and resources. Over recent years, there have been several role-based access control and authentication schemes, but we noticed some drawbacks in target schemes such as failing to resist well-known attacks, leaking privacy-related information, and operational cost. To defeat the weakness, this paper proposes a secure electronic healthcare record scheme based on Schnorr Signcryption, crypto hash function, and Distributed Global Database (DGDB) for the healthcare system. Based on security theories and the Canetti-Krawczyk model (CK), we notice that the proposed scheme has suitable matrices such as scalability, privacy preservation, and mutual authentication. Furthermore, findings from comparisons with comparable schemes reveal that the suggested approach provides greater privacy and security characteristics than the other schemes and has enough efficiency in computational and communicational aspects.
The relative intensity noise (RIN) characteristics in distributed feedback (DFB) lasers are analyzed theoretically by proposing a new methodology. In addition to temperature variation (T), the effect of other model parameters such as injection current (I inj ), active layer volume (V), spontaneous emission (β sp ) and gain compression (ε) factors on RIN characteristics is investigated. The numerical simulations shows, the peak RIN level can be reduced to around –150 dB/Hz, while relaxation oscillation frequency (ROF) is shifted towards 5.6 GHz. In addition, the RIN level is increased with temperature by the rate of 0.2 dB/ºC and ROF is reduced by the rate of 0.018 GHz/ºC. Results show, the low RIN level can be obtained by selecting model parameters reasonably.
The electrical load is affected by the weather conditions in many countries as well as in Iraq. The weather-sensitive electrical load is, usually, divided into two components, a weather-sensitive component, and a weather-insensitive component. The research provides a method for separating the weather-sensitive electrical load into five components. and aims to prove the efficiency of the five-component load Forecasting model. The artificial neural network was used to predict the weather-sensitive electrical load using the MATLAB R17a software. Weather data and loads were used for one year for Mosul City. The performance of the artificial neural network was evaluated using the mean squared error and the mean absolute percentage error. The results indicate the accuracy of the prediction model used, MAPE equal to 0.0402.
The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.
Control of Induction Motor (IM) is well known to be difficult owing to the fact the models of IM are highly nonlinear and time variant. In this paper, to achieve accurate control performance of rotor position control of IM, a new method is proposed by using adaptive inverse control (AIC) technique. In recent years, AIC is a very vivid field because of its advantages. It is quite different from the traditional control. AIC is actually an open loop control scheme and so in the AIC the instability problem cased by feedback control is avoided and the better dynamic performances can also be achieved. The model of IM is identified using adaptive filter as well as the inverse model of the IM, which was used as a controller. The significant of using the inverse of the IM dynamic as a controller is to makes the IM output response to converge to the reference input signal. To validate the performances of the proposed new control scheme, we provided a series of simulation results.
The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.
This paper presents the PLC-HMI based simulation of electrical-based PV cell/array model in laboratory platform to give the opportunity to students and users who haven't clear knowledge to study PV cell and array behavior with respect to change of environment conditions and electrical parameters. This simulation process covers the cell models under ideal and non-ideal ones. In non-ideal one, the series resistance and the shunt resistance are covered.
COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.
The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Genetic-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (forward controller) contains two parts, an identifier part and model reference controller part. The identification is based on forward identification technique. The proposed controller it tested in normal and load disturbance conditions.
In this paper describe to mathematical analysis for a three-phase, two level inverter designs. As we know the power electronic devices (inverter) to convert the DC power to AC power (controller on output voltage and frequency level). In Industrial applications, the inverters are used for adjustable speed (AC Drives). In this paper, the mathematical analyses for inverter design are done by using Software packages C++ Builder and visual C++ Language. For non- linear distortions described by the load power factor in power system networks. The P.F is reverse proportional with the harmonics distortion. Small P.F means much more of harmonic distortion, and lower power quality for consumers. to improve the P.F, and power quality in this paper the small capacitor installed as part of the rectified the load current has power (30 KW with P.F load 0.8), the fluctuations of the rectified voltage must not greater than +/- 10%.The power factor proportion of the load power, with Modulation coefficient p.u approximately unity. The calculation is achieved with different integrations steps with load power 30KW, 0.8 P.F. all results done Based on model and experimental data..
This paper suggests the use of the traditional proportional-integral-derivative (PID) controller to control the speed of multi Permanent Magnet Synchronous Motors (PMSMs). The PMSMs are commonly used in industrial applications due to their high steady state torque, high power, high efficiency, low inertia and simple control of their drives compared to the other motors drives. In the present study a mathematical model of three phase four poles PMSM is given and simulated. The closed loop speed control for this type of motors with voltage source inverter and abc to dq blocks are designed. The multi (Master/Slaves approach) method is proposed for PMSMs. Mathwork's Matlab/Simulink software package is selected to implement this model. The simulation results have illustrated that this control method can control the multi PMSMs successfully and give better performance.
Video prediction theories have quickly progressed especially after a great revolution of deep learning methods. The prediction architectures based on pixel generation produced a blurry forecast, but it is preferred in many applications because this model is applied on frames only and does not need other support information like segmentation or flow mapping information making getting a suitable dataset very difficult. In this approach, we presented a novel end-to-end video forecasting framework to predict the dynamic relationship between pixels in time and space. The 3D CNN encoder is used for estimating the dynamic motion, while the decoder part is used to reconstruct the next frame based on adding 3DCNN CONVLSTM2D in skip connection. This novel representation of skip connection plays an important role in reducing the blur predicted and preserved the spatial and dynamic information. This leads to an increase in the accuracy of the whole model. The KITTI and Cityscapes are used in training and Caltech is applied in inference. The proposed framework has achieved a better quality in PSNR=33.14, MES=0.00101, SSIM=0.924, and a small number of parameters (2.3 M).
Four-leg voltage source inverter is an evolution of the three-leg inverter, and was ought about by the need to handle the non-linear and unbalanced loads. In this work Matlab/ Simulink model is presented using space vector modulation technique. Simulation results for worst conditions of unbalanced linear and non-linear loads are obtained. Observation for the continuity of the fundamental inverter output voltages vector in stationary coordinate is detected for better performance. Matlab programs are executed in block functions to perform switching vector selection and space vector switching.
Swimming performance underlies the biomechanical properties and functional morphology of fish fins. In this article, a pair of concave fin has been suggested, which is inspired from Labriform-mode Swimming fish. First, three concave fins with different sizes are proposed in order to choose the optimum size. All three fins have the same length but with different surface areas, such that each fin has an aspect ratio different from the others. Next, the complete design of the robot is suggested, the complete design of the body and pectoral fins were subjected to computational fluid dynamics (CFD) analysis to show the validity of the proposed model. Finally, the physical model is suggested and provided with 3D printer of Polylactic Acid (PLA) with a density of 1240 kg/ m3. The swimming robot fins have been examined by CFD analysis provided by Solidworks® to evaluate the highest thrust and lowest drag forces. The result showed that the optimum fin is the one with the lowest aspect ratio fin produces the highest drag, whereas the highest aspect ratio fin gives the lowest drag and thrust, therefore; a value of aspect ratio in between these two cases is chosen. While other types of examinations are based on motion analysis of the 3D design, the required motor torque is calculated in order to select a suitable servomotor for this purpose, which a HS-5086WP waterproof servomotor can achieve the calculated torque.
Growing interests in nature-inspired computing and bio-inspired optimization techniques have led to powerful tools for solving learning problems and analyzing large datasets. Several methods have been utilized to create superior performance-based optimization algorithms. However, certain applications, like nonlinear real-time, are difficult to explain using accurate mathematical models. Such large-scale combination and highly nonlinear modeling problems are solved by usage of soft computing techniques. So, in this paper, the researchers have tried to incorporate one of the most advanced plant algorithms known as Venus Flytrap Plant algorithm(VFO) along with soft-computing techniques and, to be specific, the ANFIS inverse model-Adaptive Neural Fuzzy Inference System for controlling the real-time temperature of a microwave cavity that heats oil. The MATLAB was integrated successfully with the LabVIEW platform. Wide ranges of input and output variables were experimented with. Problems were encountered due to heating system conditions like reflected power, variations in oil temperature, and oil inlet absorption and cavity temperatures affecting the oil temperature, besides the temperature’s effect on viscosity. The LabVIEW design followed and the results figure in the performance of the VFO- Inverse ANFIS controller.
In today's chemical, refinery, and petrochemical sectors, separation tanks are one of the most significant separating processes. One or more separation tanks must operate consistently and reliably for multiple facilities' safe and efficient operation. Therefore, in this paper, a PI controller unit has been designed to improve the performance of the tank level controller of the industrial process in Basrah Refinery Station. The overall system mathematical model has been derived and simulated by MATLAB to evaluate the performance. Further, to improve the performance of the tank level controller, optimal PI parameters should be calculated, which Closed-Loop PID Autotuner has been used for this task. Several experiments have been conducted to evaluate the performance of the proposed system. The results indicated that the PI controller based on the Autotuner Method is superior to the conventional PI controller in terms of ease to implement and configuration also less time to get optimal PI gains.
The aim of this paper is to investigate the switching characteristics of hetrojunction phototransistor (HPT). First, the static characteristics of the HPT are given under ideal conditions to get a physical insight on the main parameters affecting it's response. Then the speed of response of HPT is addressed and supported by simulation results reported for $1.3~\mu m$ InGaAs/InP transistor.
In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error inherited in the RBF networks. The stability of the system with the combined control law guaranteed through Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and convergence.
This work presents a wireless communication network (WCN) infrastructure for the smart grid based on the technology of Worldwide Interoperability for Microwave Access (WiMAX) to address the main real-time applications of the smart grid such as Wide Area Monitoring and Control (WAMC), video surveillance, and distributed energy resources (DER) to provide low cost, flexibility, and expansion. Such wireless networks suffer from two significant impairments. On one hand, the data of real- time applications should deliver to the control center under robust conditions in terms of reliability and latency where the packet loss is increased with the increment of the number of industrial clients and transmission frequency rate under the limited capacity of WiMAX base station (BS). This research suggests wireless edge computing using WiMAX servers to address reliability and availability. On the other hand, BSs and servers consume affected energy from the power grid. Therefore, the suggested WCN is enhanced by green self-powered based on solar energy to compensate for the expected consumption of energy. The model of the system is built using an analytical approach and OPNET modeler. The results indicated that the suggested WCN based on green WiMAX BS and green edge computing can handle the latency and data reliability of the smart grid applications successfully and with a self-powered supply. For instance, WCN offered latency below 20 msec and received data reliability up to 99.99% in the case of the heaviest application in terms of data.
Gait as a biometric can be used to identify subjects at a distance and thus it receives great attention from the research community for security and surveillance applications. One of the challenges that affects gait recognition performance is view variation. Much work has been done to tackle this challenge. However, the majority of the work assumes that gait silhouettes are captured by affine cameras where only the height of silhouettes changes and the difference in viewing angle of silhouettes in one gait cycle is relatively small. In this paper, we analyze the variation in gait recognition performance when using silhouettes from projective cameras and from affine cameras with different distance from the center of a walking path. This is done by using 3D models of walking people in the gallery set and 2D gait silhouettes from independent (single) cameras in the probe set. Different factors that affect matching 3D human models with 2D gait silhouettes from single cameras for view-independent gait recognition are analyzed. In all experiments, we use 258 multi-view sequences belong to 46 subjects from Multi-View Soton gait dataset. We evaluate the matching performance for 12 different views using Gait Energy Image (GEI) as gait features. Then, we analyze the effect of using different camera configurations for 3D model reconstruction, the GEI from cameras with different settings, the upper and lower body parts for recognition and different GEI resolutions. The results illustrate that low recognition performance is achieved when using gait silhouettes from affine cameras while lower recognition performance is obtained when using gait silhouettes from projective cameras.
Studies indicate cardiac arrhythmia is one of the leading causes of death in the world. The risk of a stroke may be reduced when an irregular and fast heart rate is diagnosed. Since it is non-invasive, electrocardiograms are often used to detect arrhythmias. Human data input may be error-prone and time-consuming because of these limitations. For early detection of heart rhythm problems, it is best to use deep learning models. In this paper, a hybrid bio-inspired algorithm has been proposed by combining whale optimization (WOA) with adaptive particle swarm optimization (APSO). The WOA is a recently developed meta-heuristic algorithm. APSO is used to increase convergence speed. When compared to conventional optimization methods, the two techniques work better together. MIT-BIH dataset has been utilized for training, testing and validating this model. The recall, accuracy, and specificity are used to measure efficiency of the proposed method. The efficiency of the proposed method is compared with state-of-art methods and produced 98.25 % of accuracy.
It's not easy to implement the mixed / optimal controller for high order system, since in the conventional mixed / optimal feedback the order of the controller is much than that of the plant. This difficulty had been solved by using the structured specified PID controller. The merit of PID controllers comes from its simple structure, and can meets the industry processes. Also it have some kind of robustness. Even that it's hard to PID to cope the complex control problems such as the uncertainty and the disturbance effects. The present ideas suggests combining some of model control theories with the PID controller to achieve the complicated control problems. One of these ideas is presented in this paper by tuning the PID parameters to achieve the mixed / optimal performance by using Intelligent Genetic Algorithm (IGA). A simple modification is added to IGA in this paper to speed up the optimization search process. Two MIMO example are used during investigation in this paper. Each one of them has different control problem.
In recent years, there has been a considerable rise in the applications in which object or image categorization is beneficial for example, analyzing medicinal images, assisting persons to organize their collections of photos, recognizing what is around self-driving vehicles, and many more. These applications necessitate accurately labeled datasets, in their majority involve an extensive diversity in the types of images, from cats or dogs to roads, landscapes, and so forth. The fundamental aim of image categorization is to predict the category or class for the input image by specifying to which it belongs. For human beings, this is not a considerable thing, however, learning computers to perceive represents a hard issue that has become a broad area of research interest, and both computer vision techniques and deep learning algorithms have evolved. Conventional techniques utilize local descriptors for finding likeness between images, however, nowadays; progress in technology has provided the utilization of deep learning algorithms, especially the Convolutional Neural Networks (CNNs) to auto-extract representative image patterns and features for classification The fundamental aim of this paper is to inspect and explain how to utilize the algorithms and technologies of deep learning to accurately classify a dataset of images into their respective categories and keep model structure complication to a minimum. To achieve this aim, must focus precisely and accurately on categorizing the objects or images into their respective categories with excellent results. And, specify the best deep learning-based models in image processing and categorization. The developed CNN-based models have been proposed and a lot of pre-training models such as (VGG19, DenseNet201, ResNet152V2, MobileNetV2, and InceptionV3) have been presented, and all these models are trained on the Caltech-101 and Caltech-256 datasets. Extensive and comparative experiments were conducted on this dataset, and the obtained results demonstrate the effectiveness of the proposed models. The obtained results demonstrate the effectiveness of the proposed models. The accuracy for Caltech-101 and Caltech-256 datasets was (98.06% and 90%) respectively.
In this paper, the hybrid-climbing legged robot is designed, implemented, and practically tested. The robot has four legs arranged symmetrically around the body were designed for climbing wire mesh fence. Each leg in robot has 3DOF which makes the motion of the robot is flexible. The robot can climb the walls vertically by using a unique design of gripper device included metal hooks. The mechanism of the movement is a combination of two techniques, the first is the common way for the successive movement like gecko by using four limbs, and the second depending on the method that used by cats for climbing on the trees using claws, for this reason, the robot is named hybrid-climbing legged robot. The movement mechanism of the climbing robot is achieved by emulating the motion behavior of the gecko, which helped to derive the kinematic equations of the robot. The robot was practically implemented by using a microcontroller for the mainboard controller while the structure of the robot body is designed by AutoCAD software. Several experiments performed in order to test the success of climbing on the vertical wire mesh fence.
Arial images are very high resolution. The automation for map generation and semantic segmentation of aerial images are challenging problems in semantic segmentation. The semantic segmentation process does not give us precise details of the remote sensing images due to the low resolution of the aerial images. Hence, we propose an algorithm U-Net Architecture to solve this problem. It is classified into two paths. The compression path (also called: the encoder) is the first path and is used to capture the image's context. The encoder is just a convolutional and maximal pooling layer stack. The symmetric expanding path (also called: the decoder) is the second path, which is used to enable exact localization by transposed convolutions. This task is commonly referred to as dense prediction, which is completely connected to each other and also with the former neurons which gives rise to dense layers. Thus it is an end-to-end fully convolutional network (FCN), i.e. it only contains convolutional layers and does not contain any dense layer because of which it can accept images of any size. The performance of the model will be evaluated by improving the image using the proposed method U-NET and obtaining an improved image by measuring the accuracy compared with the value of accuracy with previous methods.
This paper presents a method of generating realistic electricity load profile data for the UK domestic buildings. The domestic space features have been investigated excluding the heating and hot water systems. A questionnaire survey was conducted and the feedback were collected from a number of occupants at different intervals of times on daily bases in order to establish the probabilistic record of the estimated use of electrical appliances. The model concept of this study also considers the results of previous investigations such as that available in public reports and statistics as input data elements to predict the global domestic energy consumption. In addition, the daily load profile from individual dwelling to community can be predicted using this method. The result of the present method was compared to available published data and has shown reasonable agreement.
This paper presents a comprehensive analysis for the performance of heterojunction bipolar phototransistor (HPT) as an essential element for optoelectronic switch configurations. The theory of operation of the (HPT) is reviewed. Analytical expressions are drived for transistor current components, optical gain $G_{opt}$ and DC current gain $h_{FE}$ in common emitter configuration. The analysis enables one to study the influence of various structure parameters and incident optical power on the optical gain characteristics of the (HPT). Simulation results are presented for a $1.3~\mu m$ $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}/\text{InP}$ structure.
The decline in the marketing volume of Rabobank Group ICT is a serious incident as it can hinder the implementation of an increasing number of software releases for business development. The Service Desk Agent records the activities that occur to find out the problems experienced in the form of an event log. Process mining can be used to generate process model visualizations based on event logs to explicitly monitor the business. Fuzzy Miner and Heuristic Miner algorithms can be used to handle complex event logs. In this study, an analysis of the Rabobank Group ICT incident was carried out with process mining using the Fuzzy Miner and Heuristic Miner algorithms. Process mining is done by discovery, conformance, and enhancement. Based on the results of the study, it is known that the division of the work area is not good enough to cause a team to work on a lot of events while there are other teams that only work on one event. Therefore, it is necessary to have a clear and balanced division of domains and workloads so that incidents do not recur.
The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).
This work presents the mathematical model for a torso compass gait biped robot with three degrees of freedom (DOF) which is comprised of two legs and torso. Euler Lagrange method's is used to drive the dynamic equation of robot with computed control is used as a controller. The relative angles are used to simplify the robot equation and get the symmetry of the matrix. Convention controller uses critical sampling to find the value of KP and Kv in computed controller, in this paper the Genetic optimization method is used to find the optimal value of KP and Kv with suitable objective function which employ the error and overshoot to make the biped motion smooth as possible. To investigate the work of robot a Matlab 2013b is used and the result show success of modeling.
An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.
In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.
This is a design of an expert system in the focused ion beam optical system by using fuzzy logic technique to build an intelligent agent. Present software has been designed as an interpretation expert system, written in Visual C# for optimizing the calculation of three electrostatic lenses column. By using such rule based engine, the axial potential distributions for electrostatic fields undergo the constraints have been used to find spot size focusing for ions in the image plane which have values are very useful for getting and designing FIB model, over ranges of ion beam angles (5, 10,30,50,75 and 100) mrad.
Agriculture is the primary food source for humans and livestock in the world and the primary source for the economy of many countries. The majority of the country's population and the world depend on agriculture. Still, at present, farmers are facing difficulty in dealing with the requirements of agriculture. Due to many reasons, including different and extreme weather conditions, the abundance of water quality, etc. This paper applied the Internet of Things and deep learning system to establish a smart farming system to monitor the environmental conditions that affect tomato plants using a mobile phone. Through deep learning networks, trained the dataset taken from PlantVillage and collected from google images to classify tomato diseases, and obtained a test accuracy of 97%, which led to the publication of the model to the mobile application for classification for its high accuracy. Using the IoT, a monitoring system and automatic irrigation were built that were controlled through the mobile remote to monitor the environmental conditions surrounding the plant, such as air temperature and humidity, soil moisture, water quality, and carbon dioxide gas percentage. The designed system has proven its efficiency when tested in terms of disease classification, remote irrigation, and monitoring of the environmental conditions surrounding the plant. And giving alerts when the values of the sensors exceed the minimum or higher values causing damage to the plant. The farmer can take the appropriate action at the right time to prevent any damage to the plant and thus obtain a high-quality product.
The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.
The hybrid AC/DC microgrid is considered to be more and more popular in power systems as increasing loads. In this study, it is presented that the hybrid AC/DC microgrid is modeled with some renewable energy sources (e.g. solar energy, wind energy) in the residential of the consumer in order to meet the demand. The power generation and consumption are undergoing a major transformation. One of the tendencies is to integrate microgrids into the distribution network with high penetration of renewable energy resources. In this paper, a new distributed coordinated control is proposed for hybrid microgrid, which could apply to both grid-connected mode and islanded mode with hybrid energy resources and variable loads. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. Also, the maximum power point tracking technique is applied to both photovoltaic stations and wind turbines to extract the maximum power from the hybrid power system during the variation of the environmental conditions. Finally, a simulation model is built with a photovoltaic, wind turbine, hybrid microgrid as the paradigm, which can be applied to different scenarios, such as small-sized commercial and residential buildings. The simulation results have verified the effectiveness and feasibility of the introduced strategy for a hybrid microgrid operating in different modes
This paper presents a new optimization algorithm called corrosion diffusion optimization algorithm (CDOA). The proposed algorithm is based on the diffusion behavior of the pitting corrosion on the metal surface. CDOA utilizes the oxidation and reduction electrochemical reductions as well as the mathematical model of Gibbs free energy in its searching for the optimal solution of a certain problem. Unlike other algorithms, CDOA has the advantage of dispensing any parameter that need to be set for improving the convergence toward the optimal solution. The superiority of the proposed algorithm over the others is highlighted by applying them on some unimodal and multimodal benchmark functions. The results show that CDOA has better performance than the other algorithms in solving the unimodal equations regardless the dimension of the variable. On the other hand, CDOA provides the best multimodal optimization solution for dimensions less than or equal to (5, 10, 15, up to 20) but it fails in solving this type of equations for variable dimensions larger than 20. Moreover, the algorithm is also applied on two engineering application problems, namely the PID controller and the cantilever beam to accentuate its high performance in solving the engineering problems. The proposed algorithm results in minimized values for the settling time, rise time, and overshoot for the PID controller. Where the rise time, settling time, and maximum overshoot are reduced in the second order system to 0.0099, 0.0175 and 0.005 sec., in the fourth order system to 0.0129, 0.0129 and 0 sec, in the fifth order system to 0.2339, 0.7756 and 0, in the fourth system which contains time delays to 1.5683, 2.7102 and 1.80 E-4 sec., and in the simple mass-damper system to 0.403, 0.628 and 0 sec., respectively. In addition, it provides the best fitness function for the cantilever beam problem compared with some other well-known algorithms.
The electrical consumption in Basra is extremely nonlinear; so forecasting the monthly required of electrical consumption in this city is very useful and critical issue. In this Article an intelligent techniques have been proposed to predict the demand of electrical consumption of Basra city. Intelligent techniques including ANN and Neuro-fuzzy structured trained. The result obtained had been compared with conventional Box-Jenkins models (ARIMA models) as a statistical method used in time series analysis. ARIMA (Autoregressive integrated moving average) is one of the statistical models that utilized in time series prediction during the last several decades. Neuro- Fuzzy Modeling was used to build the prediction system, which give effective in improving the predict operation efficiency. To train the prediction system, a historical data were used. The data representing the monthly electric consumption in Basra city during the period from (Jan 2005 to Dec 2011). The data utilized to compare the proposed model and the forecasting of demand for the subsequent two years (Jan 2012-Dec 2013). The results give the efficiency of proposed methodology and show the good performance of the proposed Neuro-fuzzy method compared with the traditional ARIMA method.
This paper focuses on designing distributed wireless sensor network gateways armed with Intrusion Detection System (IDS). The main contribution of this work is the attempt to insert IDS functionality into the gateway node (UBICOM IP2022 network processor chip) itself. This was achieved by building a light weight signature based IDS based on the famous open source SNORT IDS. Regarding gateway nodes, as they have limited processing and energy constrains, the addition of further tasks (the IDS program) may affects seriously on its performance, so that, the current design takes these constrains into consideration as a priority and use a special protocol to achieve this goal. In order to optimize the performance of the gateway nodes, some of the preprocessing tasks were offloaded from the gateway nodes to a suggested classification and processing server and a new searching algorithm was suggested. Different measures were taken to validate the design procedure and a detailed simulation model was built to discover the behavior of the system in different environments.
Parallel manipulators have a rigid structure and can pick up the heavy objects. Therefore, a parallel manipulator has been developed based on the cooperative of three arms of a robotic system to make the whole system suitable for solving many problems such as materials handling and industrial automation. The three revolute joints are used to achieve the mechanism operation of the parallel planar robot. Those revolute joints are geometrically designed using an open-loop spatial robotic platform. In this paper, the geometric structure with three revolute joints is used to drive and analyze the inverse kinematic model for the 3RRR parallel planar robot. In the proposed design, three main variables are considered: the length of links of the 3RRR parallel planar robot, base positions of the platform, and joint angles’ geometry. Cayley-Menger determinants and bilateration are proposed to calculate these three variables to determine the final position of the platform and to move specific objects according to given desired trajectories. The proposed structure of the 3RRR parallel planar robot is simulated and different desired trajectories are tested to study the performance of the proposed stricter. Furthermore, the hardware implementation of the proposed structure is accomplished to validate the design in practical terms.
Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.
This paper presents a new strategy for controlling induction motors with unknown parameters. Using a simple linearized model of induction motors, we design robust adaptive controllers and unknown parameters update laws. The control design and parameters estimators are proved to have global stable performance against sudden load variations. All closed loop signals are guaranteed to be bounded. Simulations are performed to show the efficacy of the suggested scheme.
The Fast Fourier Transform (FFT) and Inverse FFT(IFFT) are used in most of the digital signal processing applications. Real time implementation of FFT/IFFT is required in many of these applications. In this paper, an FPGA reconfigurable fixed point implementation of FFT/IFFT is presented. A manually VHDL codes are written to model the proposed FFT/IFFT processor. Two CORDIC-based FFT/IFFT processors based on radix-2and radix-4 architecture are designed. They have one butterfly processing unit. An efficient In-place memory assignment and addressing for the shared memory of FFT/IFFT processors are proposed to reduce the complexity of memory scheme. With "in-place" strategy, the outputs of butterfly operation are stored back to the same memory location of the inputs. Because of using DIF FFT, the output was to be in reverse order. To solve this issue, we have re-use the block RAM that used for storing the input sample as reordering unit to reduce hardware cost of the proposed processor. The Spartan-3E FPGA of 500,000 gates is employed to synthesize and implement the proposed architecture. The CORDIC based processors can save 40% of power consumption as compared with Xilinx logic core architectures of system generator.
The phenomenal rise of the Internet in recent years, as well as the expansion of capacity in today’s networks, have provided both inspiration and incentive for the development of new services that combine phone, video, and text ”over IP.” Although unicast communications have been prevalent in the past, there is an increasing demand for multicast communications from both Internet Service Providers (ISPs) and content or media providers and distributors. Indeed, multicasting is increasingly being used as a green verbal exchange mechanism for institution-oriented programmers on the Internet, such as video conferencing, interactive college games, video on demand (VoD), TV over the Internet, e-learning, software programme updates, database replication, and broadcasting inventory charges. However, the lack of security within the multicast verbal exchange model prevents the effective and large-scale adoption of such important company multi-celebration activities. This situation prompted a slew of research projects that addressed a variety of issues related to multicast security, including confidentiality, authentication, watermarking, and access control. These issues should be viewed within the context of the safety regulations that work in the specific conditions. For example, in a public inventory charge broadcast, while identification is a vital necessity, secrecy is not. In contrast, video-convention programme requires both identification and confidentiality. This study gives a complete examination and comparison of the issues of group key management. Both network-dependent and network-independent approaches are used. The study also addresses the advantages, disadvantages, and security problems of various protocols.
A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.
Inter-symbol interference (ISI) exhibits major distortion effect often appears in digital storage and wireless communica- tion channels. The traditional decision feedback equalizer (DFE) is an efficient approach of mitigating the ISI effect using appropriate digital filter to subtract the ISI. However, the error propagation in DFE is a challenging problem that degrades the equalization due to the aliasing distorted symbols in the feedback section of the traditional DFE. The aim of the proposed approach is to minimize the error propagation and improve the modeling stability by incorporating adequate components to control the training and feedback mode of DFE. The proposed enhanced DFE architecture consists of a decision and controller components which are integrated on both the transmitter and receiver sides of communication system to auto alternate the DFE operational modes between training and feedback state based on the quality of the received signal in terms of signal-to-noise ratio SNR. The modeling architecture and performance validation of the proposed DFE are implemented in MATLAB using a raised-cosine pulse filter on the transmitter side and linear time-invariant channel model with additive gaussian noise. The equalizer capability in compensating ISI is evaluated during different operational stages including the training and DFE based on different channel distortion characteristics in terms of SNR using both 0.75 and 1.5 symbol duration in unit delay fraction of FIR filter. The simulation results of eye-diagram pattern showed significant improvement in the DFE equalizer when using a lower unit delay fraction in FIR filter for better suppressing the overlay trails of ISI. Finally, the capability of the proposed approach to mitigate the ISI is improved almost double the number of symbol errors compared to the traditional DFE.
Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.
voltage sags represent the greatest threat to the sensitive loads of industrial consumers, the microprocessor based-loads, and any electrical sensitive components. In this paper, a special topology is proposed to mitigate deep and long duration sags by using a modified AC to AC boost converter with a new control method. A boost converter is redesigned with a single switch to produces an output voltage that is linearly proportional to the duty cycle of the switch. On the other hand, the proposed control system is based on introducing a mathematical model that relates the missing voltage to the duty cycle of the boost converter switch. The simulation results along with the system analysis are presented to confirm the effectiveness and feasibility of the proposed circuit.
Hand gesture recognition is a quickly developing field with many uses in human-computer interaction, sign language recognition, virtual reality, gaming, and robotics. This paper reviews different ways to model hands, such as vision-based, sensor-based, and data glove-based techniques. It emphasizes the importance of accurate hand modeling and feature extraction for capturing and analyzing gestures. Key features like motion, depth, color, shape, and pixel values and their relevance in gesture recognition are discussed. Challenges faced in hand gesture recognition include lighting variations, complex backgrounds, noise, and real-time performance. Machine learning algorithms are used to classify and recognize gestures based on extracted features. The paper emphasizes the need for further research and advancements to improve hand gesture recognition systems’ robustness, accuracy, and usability. This review offers valuable insights into the current state of hand gesture recognition, its applications, and its potential to revolutionize human-computer interaction and enable natural and intuitive interactions between humans and machines. In simpler terms, hand gesture recognition is a way for computers to understand what people are saying with their hands. It has many potential applications, such as allowing people to control computers without touching them or helping people with disabilities communicate. The paper reviews different ways to develop hand gesture recognition systems and discusses the challenges and opportunities in this area.
This paper suggests the use of the traditional parallel resonant dc link (PRDCL) circuit to give soft switching to the Four-leg Space Vector Pulse Width Modulation (SVPWM) inverter. The proposed circuit provides a short period of zero voltage across the inverter during the zero-vectors occurrence. The transition between the zero and active vectors accomplished with zero- voltage condition (ZVC), this reduces the switching losses. Moreover, the inverter output voltage Total Harmonic Distortion (THD) not affected by circuit operation, since the zero voltage periods occur simultaneously with zero-vector periods. To confirm the results, balanced and unbalanced loads are used. Matlab/Simulink model implemented for simulation.