Cover
Vol. 17 No. 2 (2021)

Published: December 31, 2021

Pages: 183-189

Original Article

Human Activity Recognition Using The Human Skeleton Provided by Kinect

Abstract

In this paper, a new method is proposed for people tracking using the human skeleton provided by the Kinect sensor, Our method is based on skeleton data, which includes the coordinate value of each joint in the human body. For data classification, the Support Vector Machine (SVM) and Random Forest techniques are used. To achieve this goal, 14 classes of movements are defined, using the Kinect Sensor to extract data containing 46 features and then using them to train the classification models. The system was tested on 12 subjects, each of whom performed 14 movements in each experiment. Experiment results show that the best average accuracy is 90.2 % for the SVM model and 99 % for the Random forest model. From the experiments, we concluded that the best distance between the Kinect sensor and the human body is one meter.

References

  1. J. Neumann, J. R. Casas, D. Macho, and J. R. Hidalgo, “Integration of audiovisual sensors and technologies in a smart room,” Pers. Ubiquitous Comput., vol. 13, no. 1, pp. 15–23, 2009, doi: 10.1007/s00779-007-0172-1.
  2. J. Zhao, G. Zhang, L. Tian, and Y. Q. Chen, “Real-Time Human Detection With Depth Camera Via A Physical Radius-Depth Detector And A Cnn Descriptor School of Computer Science , Shanghai Key Fudan University , China,” no. July, pp. 1536–1541, 2017.
  3. S. Majumder and N. Kehtarnavaz, “Vision and Inertial Sensing Fusion for Human Action Recognition: A Review,” IEEE Sens. J., vol. 21, no. 3, pp. 2454–2467, 2021, doi: 10.1109/JSEN.2020.3022326.
  4. Microsoft, “Kinect Sensor,” no. November, pp. 1371– 1372, 2012, doi: 10.13140/2.1.1068.5124.
  5. B. Ben Amor, J. Su, and A. Srivastava, “Action Recognition Using Rate-Invariant Analysis of Skeletal Shape Trajectories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 1–13, 2016, doi: 10.1109/TPAMI.2015.2439257.
  6. A. Jana, “Kinect for Windows SDK Programming Guide,” in PACT Publishing, 2012, pp. 1–366.
  7. S. Gaglio, G. Lo Re, and M. Morana, “Human Activity Recognition Process Using 3-D Posture Data,” IEEE Trans. Human-Machine Syst., vol. 45, no. 5, pp. 586–597, 2015, doi: 10.1109/THMS.2014.2377111.
  8. M. Awad and R. Khanna, “Efficient learning machines: Theories, concepts, and applications for engineers and system designers,” Effic. Learn. Mach. Theor. Concepts, Appl. Eng. Syst. Des., no. January, pp. 1–248, 2015, doi: 10.1007/978-1-4302-5990-9.
  9. T. L. Le, M. Q. Nguyen, and T. T. M. Nguyen, “Human posture recognition using human skeleton provided by Kinect,” in 2013 International Conference on Computing, Management and Telecommunications, ComManTel 2013, 2013, pp. 340–345, doi: 10.1109/ComManTel.2013.6482417.
  10. F. Zhu, L. Shao, and M. Lin, “Multi-view action recognition using local similarity random forests and sensor fusion,” Pattern Recognit. Lett., vol. 34, no. 1, pp. 20–24, 2013, doi: 10.1016/j.patrec.2012.04.016.
  11. S. Fallmann and L. Chen, “Computational sleep behavior analysis: A survey,” IEEE Access, vol. 7, pp. 142421–142440, 2019, doi: 10.1109/ACCESS.2019.2944801.
  12. M. G. A. Komang, M. N. Surya, and A. N. Ratna, “Human activity recognition using skeleton data and support vector machine,” J. Phys. Conf. Ser., vol. 1192, no. 1, pp. 0–8, 2019, doi: 10.1088/1742- 6596/1192/1/012044.
  13. E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “A Human Activity Recognition System Using Skeleton Data from RGBD Sensors,” Comput. Intell. Neurosci., vol. 2016, 2016, doi: 10.1155/2016/4351435.
  14. A. Ben Tamou, L. Ballihi, and D. Aboutajdine, “Automatic learning of articulated skeletons based on mean of 3D joints for efficient action recognition,” Int. J. Pattern Recognit. Artif. Intell., vol. 31, no. 4, pp. 1–19, 2017, doi: 10.1142/S0218001417500082.
  15. S. Ghazal and U. S. Khan, “Human posture classification using skeleton information,” 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc., vol. 2018-Janua, pp. 1–4, 2018, doi: 10.1109/ICOMET.2018.8346407.
  16. L. Wang, D. Q. Huynh, and P. Koniusz, “A Comparative Review of Recent Kinect-Based Action Recognition Algorithms,” IEEE Trans. Image Process., vol. 29, pp. 15–28, 2020, doi: 10.1109/TIP.2019.2925285.
  17. Z. Ye and H. Li, “Based on Radial Basis Kernel function of Support Vector Machines for speaker recognition,” 2012 5th Int. Congr. Image Signal Process. CISP 2012, no. Cisp, pp. 1584–1587, 2012, doi: 10.1109/CISP.2012.6469807.
  18. L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese, “Learning an image-based motion context for multiple people tracking,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3542–3549, 2014, doi: 10.1109/CVPR.2014.453.
  19. M. W. Rahman and M. L. Gavrilova, “Kinect gait skeletal joint feature-based person identification,” in Proceedings of 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2017, 2017, pp. 423–430, doi: 10.1109/ICCI- CC.2017.8109783.
  20. R. Vemulapalli, F. Arrate, and R. Chellappa, “R3DG features: Relative 3D geometry-based skeletal representations for human action recognition,” Comput. Vis. Image Underst., vol. 152, pp. 155–166, 2016, doi: 10.1016/j.cviu.2016.04.005.
  21. M. Alaziz, Z. Jia, R. Howard, X. Lin, and Y. Zhang, “MotionTree: A Tree-Based In-Bed Body Motion Classification System Using Load-Cells,” Proc. - 2017 IEEE 2nd Int. Conf. Connect. Heal. Appl. Syst. Eng. Technol. CHASE 2017, pp. 127–136, 2017, doi: 10.1109/CHASE.2017.71.
  22. B. Seddik, S. Gazzah, and N. Essoukri Ben Amara, “Human-action recognition using a multi-layered fusion scheme of Kinect modalities,” IET Comput. Vis., vol. 11, no. 7, pp. 530–540, 2017, doi: 10.1049/iet-cvi.2016.0326.
  23. A. Shahroudy, J. Liu, T. T. Ng, and G. Wang, “NTU RGB+D: A large scale dataset for 3D human activity analysis,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 1010–1019, 2016, doi: 10.1109/CVPR.2016.115.
  24. T. H. An, T. Q. Phuc, N. T. Hai, and T. T. Mai, “Support vector machine algorithm for human fall recognition kinect-based skeletal data,” Proc. 2015 2nd Natl. Found. Sci. Technol. Dev. Conf. Inf. Comput. Sci. NICS 2015, no. September 2019, pp. 202–207, 2015, doi: 10.1109/NICS.2015.7302191.