Cover
Vol. 15 No. 1 (2019)

Published: July 31, 2019

Pages: 28-36

Original Article

Parameter Estimation of a Permanent Magnetic DC Motor

Abstract

The identification of system parameters plays an essential role in system modeling and control. This paper presents a parameter estimation for a permanent magnetic DC motor using the simulink design optimization method. The parameter estimation may be represented as an optimization problem. Firstly, the initial values of the DC motor parameters are extracted using the dynamic model through measuring the values of voltage, current, and speed of the motor. Then, these values are used as an initial value for simulink design optimization. The experimentally input- output data can be collected using a suggested microcontroller based circuit that will be used later for estimating the DC motor parameters by building a simulink model. Two optimization algorithms are used, the pattern search and the nonlinear least square. The results show that the nonlinear least square algorithm gives a more accurate result that almost approaches to the actual measured speed response of the motor. )

References

  1. B. M. Byrne, Structural equation modeling with AMOS: Basic concepts, applications, and programming . Routledge, 2016.
  2. K. J. Åström and B. Wittenmark, Adaptive control . Courier Corporation, 2013.
  3. J. C. Basilio and M. V. Moreira, “State-space parameter identification in a second control laboratory,” IEEE Trans. Educ. , vol. 47, no. 2, pp. 204–210, 2004.
  4. S. Ahmed, B. Huang, and S. L. Shah, “Novel Control Eng. Pract. , vol. 15, no. 5, pp. 545– 556, 2007.
  5. W. Lord and J. H. Hwang, “DC servomotorsmodeling and parameter determination,” IEEE Trans. Ind. Appl. , no. 3, pp. 234–243, 1977.
  6. R. A. Schulz, “A frequency response method for determining the parameters of highperformance dc motors,” IEEE Trans. Ind. Electron. , no. 1, pp. 39–42, 1983.
  7. J. Becedas, G. Mamani, and V. Feliu, “Algebraic parameters identification of DC motors: methodology and analysis,” Int. J. Syst. Sci. , vol. 41, no. 10, pp. 1241–1255, 2010.
  8. M. Fliess and H. Sira-Ramirez, “Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques,” in sampled Data , Springer, 2008, pp. 363–391.
  9. G. Mamani, J. Becedas, V. Feliu-Batlle, and H. Sira-Ramirez, “Open-loop algebraic Control Conference (ECC), 2007 European , 2007, pp. 3430–3436.
  10. A. S.-M. Rodriguez, S. Aphale, and V. FeliuBatlle, “A Fast Algebraic Estimator for System Parameter Estimation and Online Controller Tuning-A Nanopositioning Application,” IEEE Trans. Ind. Electron. , 2018.
  11. S. Arshad, S. Qamar, T. Jabbar, and A. Malik, “Parameter estimation of a DC motor using ordinary least squares and recursive least squares algorithms,” in Proceedings of the 8th
  12. S. Adewusi, “Modeling and Parameter Optimization Technique.”
  13. M. Hadef, A. Bourouina, and M. R. Mekideche, “Parameter identification of a DC motor via moments method,” 2008.
  14. M. Hadef and M. R. Mekideche, “Parameter via inverse problem methodology,” Turkish J. Electr. Eng. Comput. Sci. , vol. 17, no. 2, pp. 99–106, 2009.
  15. M. A. Mughal, M. Khan, A. A. Shah, and A. A. Almani, “Parameter Estimation of DC Motor Using Chaotic Initialized Particle Swarm Optimization,” 2018.
  16. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta, “Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design,” RSC Adv. , vol. 5, no. 24, pp. 18438–18450, 2015.
  17. W. Koech, S. Rotich, T. Rotich, and F. Nyamwala, “Dynamic model of a dc motorMath. , vol. 1, pp. 1–16, 2016.
  18. H. Rashid, F. M. Siam, N. Maan, and W. N. W. A. Rahman, “Parameter Estimation for a Model of Ionizing Radiation Effects on Targeted Cells using Genetic Algorithm and Pattern Search Method,” Matematika , vol. 34, no. 3, pp. 1–13, 2018.
  19. J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM J. Sci. Stat. Comput. , vol. 4, no. 3, pp. 553–572, 1983.
  20. R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “Approximate solution of the trust region problem by minimization over two-dimensional subspaces,” Math. Program. , vol. 40, no. 1–3, pp. 247–263, 1988.
  21. T. Steihaug, “The conjugate gradient method and trust regions in large scale optimization,” SIAM J. Numer. Anal. , vol. 20, no. 3, pp. 626– 637, 1983.
  22. M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,” SIAM J. Sci. Comput. , vol. 21, no. 1, pp. 1–23, 1999.