Cover
Vol. 15 No. 2 (2019)

Published: December 31, 2019

Pages: 78-88

Original Article

Nonlinear Physiological Model of Insulin-Glucose Regulation System in Type 1 Diabetes Mellitus

Abstract

Mathematical modeling is very effective method to investigate interaction between insulin and glucose. In this paper, a new mathematical model for insulin-glucose regulation system is introduced based on well-known Lokta-Volterra model. Chaos is a common property in complex biological systems in the previous studies. The results here are in accordance with previous ones and indicating that insulin-glucose regulating system has many dynamics in different situations. The overall result of this paper may be helpful for better understanding of diabetes mellitus regulation system including diseases such as hyperinsulinemia and Type1 DM.

References

  1. V. W. Bolie, " Coefficients of normal blood No. 5,pp. 783-788, 1961.
  2. E. Ackerman , J. W. Rosevear and W. F. McGuckin, " A Mathematical Model of the 9, No. 2, pp.203-213, 1964.M. King and B. Zhu, “Gaming strategies,” in Path Planning to the West, vol. II, S. Tang and M. King, Eds. Xian: Jiaoda Press, 1998, pp. 158-176.
  3. E. Ackerman , L.C. Gatewood, J. W. Rosevear, G. D. Moln,"Model studies of blood-glucose regulation", Bulletin of mathematical biophysics,Vol.27, special issue ,1965.J.G. Lu, “Title of paper with only the first word capitalized,” J. Name Stand. Abbrev. , in press.
  4. L. C. Gatewood, E. Ackerman, J. W. Rosevear and G. D. Molnar," Simulation Studies of Blood-Glucose Regulation: Effect of Intestinal Absorption", Computers and Biomedical research , Vol.2,pp. 15-27, 1968.
  5. P.E. Lacy, D. A. young and C. J. Fink, " Studies on Insulin Secretion in Vitro from Endocrinology, Vol.83, pp.83-1155, 1968.
  6. M. D. Corte," On a Mathematical Model for the Analysis of the Glucose Tolerance Curve ", DIABETES, Vol. 19, No. 6, 1970.
  7. W. J. Sluiter, D. W. Erkelens, W. D. Reitsma, and H. Doorenbos, " Glucose Tolerance and DIABETES, Vol. 25, No. 4, 1976.
  8. W. J. Sluiter, D. W. Erkelens, P. Terpstra, , W. D. Reitsma, and H. Doorenbos ," Glucose Tolerance and Release ,A Mathematical Approach ", DIABETES, Vol. 25, No. 4, 1976.
  9. R.N. Bergman, Y.Z. Ider, C.R. Bowden and C. Cobelli," Quantitative estimation of insulin sensitivity ", Am. J. Physiol., 236f6),Vol. 356 No. 6, pp. E667-E677, 1979 .
  10. C. Cobelli, G. Federspil, G. Pacini, A. Salvan and C. Scandellari ," An Mathematical Model of the Dynamics of Blood Glucose and Its Hormonal Control ", Mathematical Biosciences, Vol.58 , pp.21-60, 1981.
  11. R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. M. Benedetti, M. O. Federici, T. R Pieber, H. C. Schaller, L. Schaupp, T. Vering and M. E Wilinska, " Nonlinear model predictive control of glucose concentration in unbounded (red) and stable fixed point(blue).(b) Basin of attraction for parameters set as attractors are seen. subjects with type 1 diabetes", Physiol. Meas., Vol.25,pp. 905–920. DOI:10.1088/09673334/25/4/010, 2004.
  12. C. Cobelli and K. Thomaseth, " Optimal Design for of Compartmental Models. Theory and Application to a Model of Glucose Kinetics ", Mathematical Biosciences, Vol.77, pp.267286, 1985.
  13. C. Cobelli and A. Mari , " Validation of mathematical models of complex endocrinemetabolic systems. A case study on a model of Comput.,VOL. 21, pp.390- 399,1983.
  14. U.Picchini, A. De Gaetano, S. Panunzi, S. Ditlevsen and G. Mingrone " A mathematical model of the euglycemic hyperinsulinemic clamp ", Theoretical Biology and Medical Modelling2005,Vol.2,No.44,DOI:10.1186/174 2-4682-2-44.
  15. J. S. bajaj and G. S. Rao, " A Mathematical Model for Insulin Kinetics and its Application of Protein-deficient (Malnutrition-related) Diabetes Mellitus(PDDM) ", J. theor. Biol., Vol.126, pp.491-503 , 1987.
  16. M. E. Fisher and K. lay Teo," Optimal Insulin Infusion Resulting from a Mathematical Model of Blood Dynamics ", IEEE Transactions on biomedical engineering. Vol. 36, No.4, 1989.
  17. M. E. Fisher, " A Semiclosed-Loop Algorithm for the Control of Blood Glucose Levels in Diabetics ", IEEE Transactions on biomedical engineering, Vol. 38, No.1, 1991.
  18. M. J. Quon and L. A. Campfield," A Mathematical Model and Computer Simulation Study of Receptor Regulation", J. theor. Biol. Vol.150, pp.59-72, DOI:0022-5193/91/090059 + 14 $03.00/0, 1991.
  19. M.J. Quon and L. A. Campfield, " A Mathematical Model and Computer Simulation Study of Insulin Sensitive Glucose Transporter Regulation ", J. theor. Biol., Vol.150,pp. 93-107, DOI: 00225193/91/090093+ 15 $03.00/0, 1991.
  20. C. P. Geevan, J. S. Rao, G. S. Rao and J.S.Bajaj," A Mathematical Model for Insulin Kinetics Analysis of the Model", Z theoBioL, Vol.147, pp.255-263, 1990.
  21. P. Wach, Z. Trajanoski, P. Kotanko and F. Skrabal , " Numerical approximation of mathematical model for absorption of subcutaneously injected insulin", Med. & Biol. Eng. & CompuL, VOL.33, PP: 18-23 1995.
  22. Z. Trajanoski and P. Wach, " lter for state estimation of a glucose regulatory system", Computer Methods and Programs Biomedicine , Vol.50 pp. 265-273, 1996.
  23. E. D. Lehmann, T. Deutschbc, E. R. Carsonca and P. H. Sönksenac, " Combining rule-based reasoning and mathematical modelling in diabetes care", Artificial Intelligence in Medicine ,Vol.6 , pp.137-160 1994.
  24. M.H. Kroll," Biological variation of glucose and insulin includes a deterministic chaotic component",BioSystems ,VOL.50,pp.189– 201, 1999.
  25. A. Boutayeb and A. Chetouani ," A critical review of mathematical models and data used Engineering OnLine, Vol.5, No.43, DOI:10.1186/1475925X-5-43, 2006.
  26. R. S. Parker," A Model-Based Algorithm for Blood Glucose Control in Type I Diabetic Patients", IEEE Transactions on biomedical engineering, VOL. 46, NO. 2, 1999.
  27. I. M. Tolicd, " Modeling the Insulin-Glucose Feedback System: The Signi5cance of Pulsatile Insulin Secretion",J. theor. Biol. ,Vol.207, pp.361-375, 2000.
  28. B. Topp, K.Promislow, R.Mmiurad, D. T.Finegood, " A Model of βCell Mass, Insulin, and Glucose Kinetics: Pathways to Diabetes", J. theor. Biol. Vol.206, PP:605-619. DOI:10.1006/jtbi.2000.2150, 2000.
  29. A. Mari, G. Pacini, E. Murphy, B. Ludvik and J. J. Nolan, "A Model-Based Method for Assessing insulin Sensitivity From the Oral Vol. 24, No.3, 2001.
  30. R. J. Stevens, I. M. Stratton and R. R. Holman, " UKPDS58—modeling glucose exposure as a risk factor for photocoagulation Complications, VOL.16, pp.371– 376,2002.
  31. M. Derouich and A. Boutayeb, " The effect of physical exercise on the dynamics of Vol.35, pp.911–917.
  32. A. R. kansal, " Modeling Approaches to Type Diabetes", Diabetes technology & Therapeutics, Vol. 6, No. 1, 2004.
  33. G. Pacini and R.N. Bergman, " MINMOD: a computer program to calculate sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test", Computer Methods and Programs in Biomedicine, Vol.23, pp.113-122 , 1986.
  34. J. Li, Y. Kuang and C. C. Mason, " Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays", Journal of Theoretical Biology, Vol.242 ,pp.722–735, 2006.
  35. A. D. Gaetano and O. Arino, " Mathematical modelling of the intravenous glucose tolerance test", J. Math. Biol.,Vol.40,pp.136-168, 2000.
  36. J. M. Smith, J. A. Maas, P.C. Garnsworthy, M.R. Owen, S. Coombes, T. S. Pillay, D. A. Barrett and M. E. Symonds, “Mathematical Modeling of Glucose Homeostasis and Its Relationship With Energy Balance and Body Fat”, Obesity, Vol. 17, No. 4, pp. 632–639, 2009.
  37. H. Kang , K. Han and M. Choi," Mathematical model for glucose regulation in the whole-body system", Islets, Vol.4, N.2, pp. 84-93, 2012.
  38. R. V. Overgaard, K. Jelic, M. Karlsson, J. E. Henriksen and H. Madsen., " Mathematical Beta Cell Model for Insulin Secretion following IVGTT and OGTT ",Annals of Biomedical Engineering, Vol. 34, No. 8, pp. 1343–1354, 2006.
  39. A. Makroglou, J. Li and Y. Kuang , " Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview", Applied Numerical Mathematics Vol.56, pp.559–573, 2006.
  40. H. Wang, J. Li, and Y. Kuang, " Enhanced modelling of the glucose–insulin system and Biological Dynamics ,Vol. 3, No. 1, PP:22–38 , 2009.
  41. B. Kwach, O. Ongati and R. Simwa, " Mathematical Model for Detecting Diabetes in the Blood", Applied Mathematical Sciences, Vol. 5, No. 6, pp.279 - 286, 2011.
  42. L. Pei, Q. Wang and H. Shi ," Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay" , Nonlinear Dyn,Vol.63, pp.417–427, DOI 10.1007/s11071-010-9812-5, 2011.
  43. X. Shi, Y. Kuang, A. Makroglou, S. Mokshagundam, and J. Li," Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval", CHAOS, Vol.27, 2017.
  44. L. L. McKnight, S. Lopez, A. K. Shoveller, and J. France, " Models for the Study of Whole-Body Kinetics: A Mathematical Synthesis", Hindawi Publishing Corporation ISRN Biomathematics, Vol.2013, Article 120974, pp.16, DOI:org/10.1155/2013/120974.
  45. P. Palumbo, S. Ditlevsen, A. Bertuzzi and A. D. Gaetano, " Mathematical modeling of the system: A review", Mathematical Biosciences ,Vol.244, PP:69– 81, 2013.
  46. J. Hussain and D. Zadeng, "A mathematical model of glucose-insulin interaction", Science Vision, Vol.14 , No. 2, 2014.
  47. I. Isa Adamu, Y. Haruna and E.J.D. Garba , " Mathematical Model for the Dynamics of Regulatory System under the Combined Effect of Dieting and Physical Activity",Int. J. Pure Appl. Sci. Technol., Vol.20, No.1, pp.88-100, 2014.
  48. J.C.Henquin, D. Dufrane, J. K. Conte, and M. Nenquin, " Dynamics of glucose induced J Physiol Endocrinol Metab, Vol.309, pp. E640–E650, 2015.
  49. S. Singh and D. Kumar, " A Mathematical Model on Glucose-Insulin Regulatory System with the Impact of Physical Activities", Vol.5 No.1, 2018.
  50. G.Zhao, D.Wirth, M.Hermann, " A mathematical model of the selective hepatic insulin resistance", Nature Communications Vol.8 , No.1 , pp.1362, 2017.
  51. K. Fessel ,J. B. Gaither, J. K. Bower, T. "Mathematical analysis of a model for glucose regulation", Mathematical biosciences and engineering,Vol.13, No.1, doi:10.3934/mbe.2016.13.83, 2016.
  52. H. Kang, K. Han, S. Goh and M. Choi, "Coexistence of three oscillatory modes of relevance to glucose regulation " , Journal of Biological Systems, Vol. 25, No. 2, pp. 341– 368, 2017.
  53. A. De Gaetano1, T.Hardy, B. Beck, E. AbuRaddad, P. Palumbo, J. B. Valleskey, and N. Pørksen, "Mathematical Models of Diabetes Progression", Articles in PresS. Am J PhysiolEndocrinol Metab, Vol. 8 No. 6 ,DOI:10.1152/ajpendo.90444, 2008.
  54. P.Sadeghi, K. Rajagopal, B.Safarbali, S. Jafari and P. Duraisamy, " new chaotic model for glucose-insulin regulatory system ", Nonlinear Science, and Nonequilibrium and Complex Phenomena, Vol.112 pp.44–51, 2018.
  55. H. Alali, " A mathematical model On the effect of hormone on homeostasis", ARIMA Journal, Vol. 30, pp.31-42,2019.
  56. A. Chakrabarty, J. M. Gregory, L. M. Moore, P. E. Williams, B. Farmer, A. D. Cherrington, P. Lord, B. Shelton, D. Cohen, H. C. Zisser, F. J. Doyle and E. Dassau," A new animal model of dynamics the control performance ", Journal of Process Control, Vol.76, pp.62–73, 2019.
  57. A. A. Elsadany , H. A. EL-Metwally, E. M. Elabbasy, and H. N. Agiza " Chaos and bifurcation of a nonlinear discrete preypredator system ", Computational Ecology and Software, Vol.2, No.3, pp.169-180, 2012.
  58. P. A. Valle , L.N. Coria, D. Gamboa, and C. Plata," Bounding the Dynamics of a ChaoticCancer Mathematical Model", Hindawi Mathematical Problems Engineering, Vol.20, Article ID 9787015, pp.14, 2018.
  59. A.Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov exponents from a time series”. Phys. D, Vol.16,pp.285– 317, 1985.
  60. F. R. Tahir, R. S. Ali, V.T. Pham ,A. Buscarino, M. Frasca and L. Fortuna, " A novel 4D autonomous 2n-butterfly wing chaotic attractor", Nonlinear Dynamics, Vol.84, No.4, DOI: 10.1007-016-2853-7 ,2016.
  61. G. A. Leonov., N.V. Kuznetsov., V.I. Vagaitsev, " Hidden attractor in smooth Chua systems ", Physica D: Nonlinear Phenomena, Vol. 241, No. 18, pp .1482-1486, 2012.
  62. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G. A. Leonov, A. Prasad, "Hidden attractors in dynamical systems", Physics Reports, Vol.637, pp.1–50, 2016.