Cover
Vol. 12 No. 2 (2017)

Published: January 31, 2017

Pages: 207-213

Original Article

Design Methodology for Reducing RIN Level in DFB Lasers

Abstract

The relative intensity noise (RIN) characteristics in distributed feedback (DFB) lasers are analyzed theoretically by proposing a new methodology. In addition to temperature variation (T), the effect of other model parameters such as injection current (I inj ), active layer volume (V), spontaneous emission (β sp ) and gain compression (ε) factors on RIN characteristics is investigated. The numerical simulations shows, the peak RIN level can be reduced to around –150 dB/Hz, while relaxation oscillation frequency (ROF) is shifted towards 5.6 GHz. In addition, the RIN level is increased with temperature by the rate of 0.2 dB/ºC and ROF is reduced by the rate of 0.018 GHz/ºC. Results show, the low RIN level can be obtained by selecting model parameters reasonably.

References

  1. T. Rahman, D. Rafique, A. Napoli, E. Man, B. Spinnler, M. Bohn, C. Okonkwo, A. M. J. Koonen, H. Waardt,”Ultralong Haul 1.28Tb/s PM-16QAM WDM Transmission Employing Hybrid Amplification”, J. Lightwave Technolo., Vo. 33, pp. 1794 – 1804, 2015.
  2. D. Adhikari, S. Kadam and Tanushree, “Performance analysis of an 8 × 8 STBC coded MIMO system for high rate data transfer”, Conf. on Processing (ICIP), pp. 610-614, 2015
  3. N. Hassan, C. Yuen and M. B. Atique,”Tradeoff in delay, cost, and quality in data transmission over TV white spaces”, IEEE 2016
  4. H. K. Hisham, G. A. Mahdiraji, A. F. Abas, M. A. Mahdi, F. R. Mahamd Adikan “Characterization of Turn-On Time Delay in a Fiber Grating Fabry-Perot Lasers” IEEE Photon. Journal, vol. 4, pp 1662-1678, 2012.
  5. J.Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstructionequivalent-chirp technology”, Opt. Express, Vol. 17, pp5240-5245, 2009.
  6. H. K. Hisham, A. F. Abas, G. A. Mahdiraji, M. A. Mahdi, A. S. Muhammad Noor, “Relative Intensity Noise Reduction by Optimizing Fiber Grating Fabry-Perot Laser Parameters,” IEEE J. Quantum Electron., vol. 48, pp. 385-393, 2012,
  7. I. Fatadin, D. Ives, and M. Wicks,” Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers,” IEEE J. Quantum Electron., vol. 42, pp. 934–941, 2006.
  8. M. Ahmad, M. Yamada, and M. Saito,” Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron., vol. 37, pp. 1600-1610, 2001.
  9. J. Liu, W. Chen, J. Guo,; W. Wang, X. Zhou and N. Zhu, “Narrow linewidth distributed-feedback laser with low relative communications and Networking (ICOCN), 2015.
  10. M. Faugeron; M.ël Tran; O. Parillaud; M. Chtioui; Y. Robert; E. Vinet; A. Enard; J. Jacquet; F. Dijk, “High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth”, Photonics Technology Letters, vol. 25, 2013.
  11. M. Faugeron; M.l Tran; O. Parillaud; M. Chtioui; Y. Robert; E. Vinet; A. Enard; J. Jacquet; F. Dijk, “High-Power, Low RIN 1.55µm Directly Modulated DFB Lasers for Analog Signal Transmission”, IEEE Photonics Technology Letters, vol. 24, 2012.
  12. M. Ming and K. Liu, Principle and applications of optical communication , The McGraw-Hill: USA, 1996.
  13. G. P. Agrawal and N. K. Dutta, LongWavelength Semiconductor lasers . New York: van Nostrand Reinhold, 1986.
  14. H.K. Hisham, A.F. Abas, G.A. Mahdiraji, M.A. Mahdi and A.S. Muhammad Noor,” Characterization of phase noise in a singlemode fiber grating Fabry–Perot laser”, J. Modern Optics, pp. 1-9, 2011. Vol.12 No.2 , 2016