Cover
Vol. 14 No. 1 (2018)

Published: June 30, 2018

Pages: 51-64

Original Article

Saturation Throughput and Delay Performance Evaluation of the IEEE 802.11g/n for a Wireless Lossy Channel

Abstract

Non-ideal channel conditions degrade the performance of wireless networks due to the occurrence of frame errors. Most of the well-known works compute the saturation throughput and packet delay for the IEEE 802.11 Distributed Coordination Function (DCF) protocol with the assumption that transmission is carried out via an ideal channel (i.e., no channel bit errors or hidden stations), and/or the errors exist only in data packets. Besides, there are no considerations for transmission errors in the control frames (i.e., Request to Send (RTS), Clear to Send (CTS), and Acknowledgement (ACK)). Considering the transmission errors in the control frames adds complexity to the existing analysis for the wireless networks. In this paper, an analytical model to evaluate the Medium Access Control (MAC) layer saturation throughput and packet delay of the IEEE 802.11g and IEEE 802.11n protocols in the presence of both collisions and transmission errors in a non-ideal wireless channel is provided. The derived analytical expressions reveal that the saturation throughput and packet delay are affected by the network size (n), packet size, minimum backoff window size (W min ), maximum backoff stage (m), and bit error rate (BER). These results are important for protocol optimization and network planning in wireless networks .

References

  1. Arif, T.Y., Sari, R. F.: ‘An analytical model of A-MSDU scheme with enhanced Block ACK for pp.291-298.
  2. Arif, T.Y., Sari, R. F.: ‘Frame Error Estimation for DCF Scheme with HT-PHY Performance Evaluation’. Proc. of International Conference on Internet Services Technology and Information Engineering (ISTIE 2013), 2013, pp.1- 6. 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 Number of nodes Delay (sec) ( c) IEEE 802.11g/n different BER 1.4 1.6 1.8 2.2 2.4 2.6 x 10 Number of nodes Saturation throughput (bps) 1000 2000 3000 4000 5000 6000 7000 8000 9000 0.5 1.5 2.5 x 10 Packet size (bits) Saturation throughput (bps)
  3. Luca B., Romano F., Leonardo M.: ‘Analytical Model for Performance Analysis of IEEE 802.11 DCF Mechanism in Multi-RadioWireless Networks’. Proc. of IEEE Communications Conference, 2010, pp.1- 5.
  4. Luca B., Romano F.: ‘Performance evaluation of an 2013, 26, pp. 56-67.
  5. Yeo, J., Agrawala, A.: ‘Packet error model for the Personal, Indoor and Mobile Radio Communications, 2003, pp. 1722-1726.
  6. Chatzimisios, P., Boucouvalas, A. C., Vitsas, V.: ‘Performance analysis of IEEE 802.11 DCF in presence of transmission errors’. Proc. of IEEE pp. 3854-3858.
  7. Li, X. , Zeng, Q. A.: ‘Influence of bit error rate on the performance of IEEE 802.11 MAC protocol’. Proc. of Conference, 2007, pp. 367-372.
  8. Ha C. L.: ‘DCF Throughput Analysis of IEEE 802.11a/g/n-based Mobile LAN over Correlated Fading Channel’. International Journal on Electrical Engineering and Informatics, 2011, 3,(4), pp. 415-430.
  9. Park, S., Chang, Y, Copeland, J. A.: ‘Throughput enhancement of MANETs: Packet fragmentation with hidden stations and BERs’. Proc. of IEEE Consumer Communications and Networking Conference, 2012 , pp. 188-193.
  10. Prakash, G., Thangaraj, P.: ‘Throughput analysis of condition’. Proc. of the International Conference and Workshop on Emerging Trends in Technology, 2010, pp. 298-303.
  11. Alshanyour, A., Agarwal, A.: ‘Three-dimensional Markov chain model for performance analysis of the of IEEE Global Telecommunications Conference, 2009, pp. 1-7.
  12. Yun, J. H.: ‘Throughput analysis of IEEE 802.11 WLANs with automatic rate fallback in a lossy channel’. Transactions on Wireless Communications, 2009, 8, (2), pp. 689-693.
  13. Xiaomin, Z.: ‘A New Method for Analyzing Nonsaturated IEEE 802.11 DCF Networks’. IEEE Wireless Communications Letters, 2013, 2, pp. 243-246.
  14. Bianchi, G.: ‘Performance analysis of the IEEE 802.11 distributed coordination function’. IEEE Journal on Selected Areas in Communications, 2000, 18, (3), pp. 535-547.
  15. Guido, R., H., Denteneer, D., Lothar, S., Yunpeng, Z., Xavier C., Bernhard W.: ‘The IEEE 802.11 Universe,’ IEEE Communications Magazine, 2010, pp. 62-70.
  16. Sixto, O., J.: ‘IEEE 802.11n: The Road Ahead,’ IEEE Computer, 2009, pp. 13-15.
  17. Jyoti, K., Shoba, K., Ninad, S.: ‘Frame Aggregation Mechanism for Highthroughput 802.11n WLANs,’ Networks, 2012, 4,(3), pp 141-152.
  18. Liu, W., J., Huang, C., H., Feng K., T.: ‘Performance Analysis of Block Acknowledgement Mechanisms for Next Generation Wireless Networks’. Proc. of Conference (WCNC), 2010, pp.1- 6.
  19. Arif, T.,Y., Sari, R., F.: ‘Throughput Estimates for A-MPDU and Block ACK Schemes Using HT-PHY Layer’. Journal of Computers, 2014, 9,(3), pp. 678-687.
  20. Ping, Z., Jianghong S., Yuxiang Z., Huihuang, C., Xuemin, H.: ‘ A Generalized Markov Chain Model for IEEE 802.11 Distributed Coordination Function’. KSII Transactions on Internet and Information Systems, 2012, 6,(2), pp. 664-682.
  21. Changchun, X., Jingdong, G., Yanyi, X., Jianhua H.: ‘Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions,’ KSII Transactions on Internet and Information Systems, 2012, 6, (2), pp.683-701.
  22. Soo, Y., oung, S.: ‘Unsaturated Throughput Analysis of IEEE 802.11 DCF under Imperfect Channel Sensing’. KSII Transactions on Internet and
  23. Abdullah, A., A., Gebali, F., Cai, L.: ‘Modeling the throughput and delay in wireless multihop ad hoc networks’. Proc. of IEEE Global Telecommunications Conference, 2009, pp. 1-6.
  24. S. A. Alabady, M. F. M. Salleh, and A. Hasib, “Throughput and Delay Analysis of IEEE 802.11 DCF in the Presence of Hidden Nodes for Multi-hop Wireless Networks,” Wireless Personal Communication, vol. 79, no. 2, pp. 907–927, 2014.
  25. Carvalho, M., M.: ‘Analytical Modeling of Medium Access Control Protocols in Wireless Networks’. Ph.D Thesis, Department. of Computer Engineering, California University, Santa Cruz, 2006.
  26. Sartthong, J., Sittichivapak, S.: ‘Near Theoretical Maximum Throughput Limits of CSMA/CA RTS CTS Protocol in IEEE 802.11 Wireless Networks Using Active Node Back-off Algorithm’. Proc. of Simulation, 2011, pp. 133-138 .
  27. Wang, Y., Garcia-Luna-Aceves, J., J.: ‘Modeling of collision avoidance protocols in single-channel multihop wireless networks’. Wireless Networks, 2004, 10, (5), pp.495-506.
  28. Ding, P., Holliday, J., Celik, A.: ‘Modeling the performance of a wireless node in multihop ad-hoc networks’. Proc. of IEEE International Conference on Wireless Networks, Communications and Mobile Computing, 2005, 2, pp. 1424-1429.
  29. Gupta, N., Rai, C., S.: ‘Non-saturation throughput analysis of IEEE 802.11 DCF considering short retry limit for single hop ad hoc networks’. Proc. of Second Communication Technology (FGCT), 2013, pp. 10-15.
  30. Chatzimisios, P., Boucouvalas, A., C., Vitsas, V.: ‘Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs’ International Journal of Communication Systems, 2005, 18, pp. 545-569.
  31. Part 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,