Abstract
The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller I. I NTRODUCTION Suspensions systems can be classified into three types are (passive, simi active and active). Figs. 1, 2 and 3 below shows the three types of Quarter car suspension system and hydraulic actuator position in each type.[1] Fig. 1 Passive Quarter Car Model Fig. 2 Simi-Active Quarter Car Model Fig. 3 Active Quarter Car Model In passive suspension systems the main parts are springs and hydraulic dumpers. The main job of these dumpers is to decrease the road profile and vibration effects into driver and passenger’s cabin. In active suspension system there are three parts under spring mass (body of car), spring, dumper and hydraulic actuator are connected in parallel. In this paper an additional parts is added to passive suspension system in parallel with springs and dumpers called a hydraulic actuator to get an active suspension system. This hydraulic actuator is a nonlinear part and it is controlled by spool valve. The mechanism of this actuator is to decrease the road profile and vibration from passive suspension system to get more comfortable riding. By using PID controller trained by Particle Swarm Optimization (PSO) to find optimal values of proportional, divertive and Quarter Car Active Suspension System Control Using PID Controller tuned by PSO Wissam H. Al-Mutar Turki Y. Abdalla Electrical Eng. Computer Eng. University of Basrah University of Basrah Basrah. Iraq. Basrah. Iraq. Spring Mass Unpring Mass K Kt C Ct Spring Mass Unpring K K C C Spring Mass Unpring Mass K Kt C F Ct اﻟﻤﺠﻠﺔ اﻟﻌﺮاﻗﻴﺔ ﻟﻠﻬﻨﺪﺳﺔ اﻟﻜﻬﺮﺑﺎﺋﻴﺔ واﻻﻟﻜﺘﺮوﻧﻴﺔ Iraq J. Electrical and Electronic Engineering ﻡﺠﻠﺪ 11 ، اﻟﻌﺪد 2 ، 2015 Vol.11 No.2 , 2015 Active suspension, PSO, PID controller, quarter car