Cover
Vol. 20 No. 1 (2024)

Published: June 30, 2024

Pages: 206-213

Original Article

Improving Operating Time for External Laser Source based Polymer Fiber by Optimizing Model Parameters

Abstract

In this paper, an analysis of performance acceleration of an external laser source (ELS) model based polymer fiber gratings (PFGs) by reducing the turn-on delay time (TDelay) is successfully investigated numerically by optimizing model parameters. In contrast to all previous studies that relied either on approximate or experimental equations, the analysis was based on an exact numerical formula. The analysis is based on the investigation of the effect of diode injected current (Iin j), temperature (T), recombination rate coefficients (i.e. Anr, B, and C), and optical feedback (OFB) level. Results have demonstrated that by optimizing model parameters the Delay can be controlled and reduced effectively.

References

  1. Y. Fan, J. Liu, R. Xiao, Y. Gong, Z. Sun, P. Dai, K. Tang, Y. Shi, and X. Chen, “Uncooled tunable laser based on high-density integration of distributed feedback semi- conductor lasers,” IEEE Journal of Quantum Electronics, 2023.
  2. Z. Sun, Z. Su, R. Xiao, Y. Wang, K. Liu, F. Wang, Y. Liu, T. Fang, Y.-J. Chiu, and X. Chen, “Tunable laser via high-density integration of dfb lasers with high preci- sion wavelength spacings,” IEEE Photonics Technology Letters, vol. 34, no. 9, pp. 467–470, 2022.
  3. M. Khan, “Quantum-dash laser-based tunable 50/75 ghz mmw transport system for future l-band networks,” IEEE Photonics Technology Letters, vol. 34, no. 16, pp. 842–845, 2022.
  4. Z. Wei, J. Zhang, W. Li, and D. V. Plant, “400-gbps/80- km rate-flexible pcs-64-qam wdm-cpon with pseudo- m-qam chaotic physical layer encryption,” Journal of Lightwave Technology, vol. 41, no. 8, pp. 2413–2424, 2023.
  5. T. Tan, Y. Xie, C. Duan, Q. Chai, Y. Chu, G. Sun, Y. Luo, Y. Tian, and J. Zhang, “Accuracy improvement of resid- ual stress measurements in the tube by fbg using the genetic algorithm,” IEEE Transactions on Instrumenta- tion and Measurement, vol. 71, pp. 1–7, 2022.
  6. J. Zhang, T. Tan, C. Duan, Z. Li, X. Liu, Q. Chai, G. Xiao, Y. Tian, W. Zhang, and Y. Xu, “Measurement of residual stress based on a ring fbg array,” IEEE Trans- actions on Instrumentation and Measurement, vol. 71, pp. 1–7, 2021.
  7. H. K. Hisham, “Numerical analysis of thermal depen- dence of the spectral response of polymer optical fiber bragg gratings.,” Iraqi Journal for Electrical & Elec- tronic Engineering, vol. 12, no. 1, 2016.
  8. Y.-L. Wang, Y. Tu, and S.-T. Tu, “Development of highly-sensitive and reliable fiber bragg grating tem- perature sensors with gradient metallic coatings for cryo- genic temperature applications,” IEEE sensors journal, vol. 21, no. 4, pp. 4652–4663, 2020.
  9. Y. Zhao, S. Liu, J. Luo, Y. Chen, C. Fu, C. Xiong, Y. Wang, S. Jing, Z. Bai, C. Liao, et al., “Torsion, re- fractive index, and temperature sensors based on an im- proved helical long period fiber grating,” Journal of Lightwave Technology, vol. 38, no. 8, pp. 2504–2510, 2020. 212 | Hisham & Marzook
  10. S. Chen, Y. Zhao, M. Tang, Z. Hua, H. Peng, Y. Ma, and Y. Liu, “Wavelength selective mode conversion in few-mode fiber with cascaded long-period gratings,” in 2022 Asia Communications and Photonics Conference (ACP), pp. 218–221, IEEE, 2022.
  11. Z. Liu, X. Zhao, C. Mou, and Y. Liu, “Mode selective conversion enabled by the long-period gratings inscribed in elliptical core few-mode fiber,” Journal of Lightwave Technology, vol. 38, no. 6, pp. 1536–1542, 2020.
  12. N. Deng, L. Zong, H. Jiang, Y. Duan, and K. Zhang, “Challenges and enabling technologies for multi-band wdm optical networks,” Journal of Lightwave Technol- ogy, vol. 40, no. 11, pp. 3385–3394, 2022.
  13. H. Wang, Y. Liang, X. Zhang, S. Chen, L. Shen, L. Zhang, J. Luo, and J. Wang, “Low-loss orbital an- gular momentum ring-core fiber: design, fabrication and characterization,” Journal of lightwave technology, vol. 38, no. 22, pp. 6327–6333, 2020.
  14. P. Zhu, P. Liu, Z. Wang, C. Peng, N. Zhang, and M. A. Soto, “Evaluating and minimizing induced mi- crobending losses in optical fiber sensors embedded into glass-fiber composites,” Journal of lightwave technol- ogy, vol. 39, no. 22, pp. 7315–7325, 2021.
  15. C. Xia, Z. Deng, A. Zhang, P. Cai, Z. Mo, J. Liu, G. Zhou, Z. Hou, Q. Zhang, and L. Guo, “Ultra-low-loss hollow-core bragg antiresonant fiber with super band- width transmission window,” IEEE Photonics Journal, vol. 14, no. 3, pp. 1–5, 2022.
  16. H. K. Hisham, A. F. Abas, G. A. Mahdiraji, M. A. Mahdi, and A. S. M. Noor, “Relative intensity noise reduction by optimizing fiber grating fabry–perot laser parameters,” IEEE Journal of Quantum Electronics, vol. 48, no. 3, pp. 375–383, 2011.
  17. D. Priante, M. Zhang, A. R. Albrecht, R. Bek, M. Zim- mer, C. L. Nguyen, D. P. Follman, G. D. Cole, and M. Sheik-Bahae, “In-well pumping of a membrane external-cavity surface-emitting laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1: Semiconductor Lasers, pp. 1–7, 2021.
  18. Y. Wu, L. Deng, K. Yang, and W. Liang, “Narrow linewidth external cavity laser capable of high repeti- tion frequency tuning for fmcw lidar,” IEEE Photon- ics Technology Letters, vol. 34, no. 21, pp. 1123–1126, 2022.
  19. X. Qiu, C. Wang, J. Li, C. Li, X. Xie, Y. Wang, and X. Wei, “Temperature-stabilized and widely tunable ver- tical external cavity surface-emitting laser with a simple line cavity,” IEEE Photonics Journal, vol. 14, no. 4, pp. 1–7, 2022.
  20. P. Tatar-Mathes, H.-M. Phung, A. Rogers, P. Rajala, S. Ranta, M. Guina, and H. Kahle, “Effect of non- resonant gain structure design in membrane external- cavity surface-emitting lasers,” IEEE Photonics Technol- ogy Letters, 2023.
  21. H. Hisham, Fiber bragg grating sensors: development and applications. CRC Press, 2019.
  22. H. K. Hisham, S. B. A. Anas, M. H. A. Bakar, M. T. Alresheedi, A. F. Abas, and M. A. Mahdi, “Parametric study of the transient period characteristics of distributed feedback laser diodes,” Journal of Optical Technology, vol. 90, no. 2, pp. 68–74, 2023.
  23. H. K. Hisham, “Delay time reduction in vcsels by opti- mizing laser parameters.,” Iraqi Journal for Electrical & Electronic Engineering, vol. 12, no. 2, 2016.
  24. M. M.-K. Liu, “Principles and applications of optical communications,” (No Title), 1996.
  25. G. P. Agrawal and N. K. Dutta, “Semiconductor lasers, 2nd ed. new york, ny, usa: van nostrand reinhold,” 1993.
  26. H. Hisham, G. Mahdiraji, A. Abas, M. Mahdi, and F. M. Adikan, “Characterization of transient response in fiber grating fabry–perot lasers,” IEEE Photonics Journal, vol. 4, no. 6, pp. 2353–2371, 2012.
  27. H. K. Hisham, G. A. Mahdiraji, A. Abas, M. A. Mahdi, and F. M. Adikan, “Characterization of turn-on time de- lay in a fiber grating fabry–perot lasers,” IEEE Photonics Journal, vol. 4, no. 5, pp. 1662–1678, 2012.
  28. S. Betti, E. Bravi, and M. Giaconi, “Effect of the turn-on delay of a semiconductor laser on clipping impulsive noise,” IEEE Photonics Technology Letters, vol. 9, no. 1, pp. 103–105, 1997.
  29. N. Volet and E. Kapon, “Turn-on delay and auger re- combination in long-wavelength vertical-cavity surface- emitting lasers,” Applied Physics Letters, vol. 97, no. 13, 2010.
  30. X. Zhang, W. Pan, J. Chen, and H. Zhang, “Theoretical calculation of turn-on delay time of vcsel and effect of carriers recombination,” Optics & Laser Technology, vol. 39, no. 5, pp. 997–1001, 2007. 213 | Hisham & Marzook
  31. H. Hisham, A. Abas, G. A. Mahdiraji, M. Mahdi, and A. M. Noor, “Comment on:“theoretical calculation of turn-on delay time of vcsel and effect of carriers recom- bination”[opt. laser technol. 39 (2007) 997–1001],” Op- tics & Laser Technology, vol. 44, no. 6, pp. 1995–1998, 2012.
  32. L. Pereira, C. Marques, R. Min, G. Woyessa, O. Bang, H. Varum, and P. Antunes, “Bragg gratings in zeonex microstructured polymer optical fiber with 266 nm nd: Yag laser,” IEEE Sensors Journal, 2023.
  33. R. He, C. Teng, S. Kumar, C. Marques, and R. Min, “Polymer optical fiber liquid level sensor: A review,” IEEE Sensors Journal, vol. 22, no. 2, pp. 1081–1091, 2021.
  34. T. Cheng, B. Li, F. Zhang, J. Chen, Q. Zhang, X. Yan, X. Zhang, T. Suzuki, Y. Ohishi, and F. Wang, “A surface plasmon resonance optical fiber sensor for simultane- ous measurement of relative humidity and temperature,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3246–3253, 2022.
  35. H. Yin, Z. Shao, F. Chen, and X. Qiao, “Highly sen- sitive ultrasonic sensor based on polymer bragg grat- ing and its application for 3d imaging of seismic physi- cal model,” Journal of Lightwave Technology, vol. 40, no. 15, pp. 5294–5299, 2022.
  36. H. K. Hisham, G. A. Mahdiraji, A. Abas, M. A. Mahdi, and F. M. Adikan, “Characterization of turn-on time de- lay in a fiber grating fabry–perot lasers,” IEEE Photonics Journal, vol. 4, no. 5, pp. 1662–1678, 2012.
  37. H. K. Hisham, “Numerical analysis of thermal depen- dence of the spectral response of polymer optical fiber bragg gratings.,” Iraqi Journal for Electrical & Elec- tronic Engineering, vol. 12, no. 1, 2016.
  38. H. Hisham, A. Abas, G. A. Mahdiraji, M. Mahdi, and A. M. Noor, “Improving the characteristics of the modu- lation response for fiber bragg grating fabry–perot lasers by optimizing model parameters,” Optics & Laser Tech- nology, vol. 44, no. 6, pp. 1698–1705, 2012.