One crucial challenge confronting operators worldwide is how to ensure that everything runs smoothly as well as how to monitor the network. The monitoring system should be accurate, easy to use, and quick enough to reflect network performance in a timely way. Passive network monitoring is an excellent tool for this. It could be used to look for issues with a single network device or a large-scale issue affecting the whole LAN or core network. However, passive network monitoring is not limited to issue resolution; it could also be used to generate network statistics and measure network performance. As shown in this review, it is a very strong tool, as seen by the sheer volume of data published on Google Scholar. The main objective of this review is to analyze and comprehend monitoring measurements for quality of service to serve as a resource for future research and application. Essential terms and concepts of network monitoring and their quality of service are presented. Network monitoring measurements (which can be passive, active, or hybrid) and their wireless network monitoring tools (which can be public domain or commercial tools) are also covered in terms of relevance, advantages, and disadvantages. Finally, the review is summarized.
Network Simulator-2(NS-2) is one of the most popular simulation systems that is widely used in the network community. C++ and the object-oriented Tool Command Language (TCL) are both used to write this simulator. C++ works as a background for this simulator, whereas TCL is responsible for scheduling discrete events and network configuration objects. The TCL language is used to write the code of the simulation scenario. NS-2 does not present enough graphical interfaces that could help a researcher reduce the time spent on writing long TCL scripts. Therefore, network researchers spend a great deal of time focusing on how to write the TCL simulation script, which consequently makes the simulation process more difficult. This study presents a novel tool that enhances simulation by using graphical interfaces. The graphical interface is used to create the network topology and convert it into a TCL script. Thus, the process is visualized easily, efficiently, and quickly. This work describes the Network Topology Tool(NTT),which is intended to help researchers who work under the network simulation environment of NS-2. In such a scenario, researchers can create the network topology through an interactive graphical user interface and also they can retrieve and edit it which considered a very important and unique service from the other previous works. This tool will allow professional users to focus on the development of new algorithms or architectures rather than spend time writing scripts for data processing. .
This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.
Present study develops short term electric load forecasting using neural network; based on historical series of power demand the neural network chosen for this network is feed forward network, this neural network has five input variables ( hour of the day, the day of the week, the load for the previous hour, the load of the pervious day, the load for the previous week). Short term load forecast is very important due to accurate for power system operation and analysis system security among other mandatory function. The trained artificial neural network shows good accuracy and robust in forecasting future load demands for the daily operation, mean absolute percentage error (MAPE) was calculated and it is maximum value is 0.75% in load forecasting on Monday.
Wireless sensor networks have many limitations such as power, bandwidth, and memory, which make the routing process very complicated. In this research, a wireless sensor network containing three moving sink nodes is studied according to four network scenarios. These scenarios differ in the number of sensor nodes in the network. The RPL (Routing Protocol for low power and lossy network) protocol was chosen as the actual routing protocol for the network based on some routing standards by using the Wsnet emulator. This research aims to increase the life of the network by varying the number of nodes forming it. By using different primitive energy of these nodes, this gives the network to continue working for the longest possible period with low and fair energy consumption between the nodes. In this work, the protocol was modified to make the sink node move to a specific node according to the node’s weight, which depends on the number of neighbors of this node, the number of hops from this node to the sink node, the remaining energy in this node, and the number of packets generated in this node. The simulation process of the RPL protocol showed good results and lower energy consumption compared to previous researches.
The problem of automatic signature recognition and verification has been extensively investigated due to the vitality of this field of research. Handwritten signatures are broadly used in daily life as a secure way for personal identification. In this paper a novel approach is proposed for handwritten signature recognition in an off-line environment based on Weightless Neural Network (WNN) and feature extraction. This type of neural networks (NN) is characterized by its simplicity in design and implementation. Whereas no weights, transfer functions and multipliers are required. Implementing the WNN needs only Random Access Memory (RAM) slices. Moreover, the whole process of training can be accomplished with few numbers of training samples and by presenting them once to the neural network. Employing the proposed approach in signature recognition area yields promising results with rates of 99.67% and 99.55% for recognition of signatures that the network has trained on and rejection of signatures that the network has not trained on, respectively.
In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.
Energy constraint has become the major challenge for designing wireless sensor networks. Network lifetime is considered as the most substantial metric in these networks. Routing technique is one of the best choices for maintaining network lifetime. This paper demonstrates implementation of new methodology of routing in WSN using firefly swarm intelligence. Energy consumption is the dominant issue in wireless sensor networks routing. For network cutoff avoidance while maximize net lifetime energy exhaustion must be balanced. Balancing energy consumption is the key feature for rising nets lifetime of WSNs. This routing technique involves determination of optimal route from node toward sink to make energy exhaustion balance in network and in the same time maximize network throughput and lifetime. The proposed technique show that it is better than other some routing techniques like Dijkstra routing, Fuzzy routing, and ant colony (ACO) routing technique. Results demonstrate that the proposed routing technique has beat the three routing techniques in throughput and extend net lifetime.
The continuous growing developments in the traffic of mobile data limits the data throughput and capacity of cellular networks. “Heterogeneous Networks (HetNets)” are efficient solution to realize such demands. However, in HetNets, the congestion on the overloaded cellular network can be increased when the traffic of data is pushed from a cellular network to the Wi-Fi. In practice, offloading the cellular data traffic to a Wireless Local Area Network (WLAN) depending on the signal quality is a broadly deployed method to solve such problem. The use of Device to Device (D2D) communication further enhances the traffic offloading in WLAN systems and helps to obtain better throughput, end-to-end delay and network load. However, the critical offloading potential and its impacts on the whole performance is not totally understood. In this paper, the offloading of Long Term Evolution (LTE) traffic is presented using a WLAN for voice and video applications. A comparison is performed among two WLAN mecha- nisms; Distributed coordination function (DCF) and Point Coordination Function (PCF). As well, the effect of add- ing a D2D technology to the PCF is discussed. The WLAN effectively offloaded nodes at their Signal to Interference and Noise Ratio (SINR) becomes more than a specific threshold. Results presented that the PCF mechanism outper- forms the DCF one in terms of packet loss ratio, throughput and the maximum load of the entire network. In addi- tion, the use of a D2D serviced in the PCF helps in further reduction in the network load.
Unmanned aerial vehicles (UAV), have enormous important application in many fields. Quanser three degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model reference adaptive controller has been used, employing the grate approximation capability of the neural network to match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law and stable neural network updating law are determined using Lyapunov theory.
According to the characteristic of HVS (Human Visual System) and the association memory ability of neural network, an adaptive image watermarking algorithm based on neural network is proposed invisible image watermarking is secret embedding scheme for hiding of secret image into cover image file and the purpose of invisible watermarking is copyrights protection. Wavelet transformation-based image watermarking techniques provide better robustness for statistical attacks in comparison to Discrete Cosine Transform domain-based image watermarking. The joined method of IWT (Integer Wavelet Transform) and DCT (Discrete Cosine Transform) gives benefits of the two procedures. The IWT have impediment of portion misfortune in embedding which increments mean square estimate as SIM and results diminishing PSNR. The capacity of drawing in is improved by pretreatment and re-treatment of image scrambling and Hopfield neural network. The proposed algorithm presents hybrid integer wavelet transform and discrete cosine transform based watermarking technique to obtain increased imperceptibility and robustness compared to IWT-DCT based watermarking technique. The proposed watermarking technique reduces the fractional loss compared to DWT based watermarking.
Address Resolution Protocol (ARP) is used to resolve a host’s MAC address, given its IP address. ARP is stateless, as there is no authentication when exchanging a MAC address between the hosts. Hacking tactics using ARP spoofing are constantly being abused differently; many previous studies have prevented such attacks. However, prevention requires modification of the underlying network protocol or additional expensive equipment, so applying these methods to the existing network can be challenging. In this paper, we examine the limitations of previous research in preventing ARP spoofing. In addition, we propose a defence mechanism that does not require network protocol changes or expensive equipment. Before sending or receiving a packet to or from any device on the network, our method checks the MAC and IP addresses to ensure they are correct. It protects users from ARP spoofing. The findings demonstrate that the proposed method is secure, efficient, and very efficient against various threat scenarios. It also makes authentication safe and easy and ensures data and users’ privacy, integrity, and anonymity through strong encryption techniques.
This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT) as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM) back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB). The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.
In this paper, a modified wavelet neural network (WNN) (or wavenet)-based predictor is introduced to predict link status (congestion with load indication) of each link in the computer network. On the contrary of previous wavenet-based predictors, the proposed modified wavenet-based link state predictor (MWBLSP) generates two indicating outputs for congestion and load status of each link based on th e premeasured power burden (square values) of utilization on each link in the previous time intervals. Fortunately, WNNs possess all learning and generalization capabilities of traditional neural networks. In addition, the ability of such WNNs are efficiently enhanced by the local characteristics of wavelet functions to deal with sudden changes and burst network load. The use of power burden utilization at the predictor input supports some non-linear distri butions of the predicted values in a more efficient manner. The proposed MWBLSP pre dictor can be used in the context of active congestion control and link load balancing techniques to improve the performance of all links in the network with best utilization of network resources.
The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.
Selection of the best type and most suitable size of conductors is essential for designing and optimizing the distribution network. In this paper, an effective method has been proposed for proper selection and incorporation of conductors in the feed part of a radial electricity distribution network considering the depreciation effect of conductors. Increasing the usability of the electric energy of the power grid for the subscribers has been considered per load increment regarding the development of the country. Optimal selection and reconstruction of conductors in the power distribution radio network have been performed through a smart method for minimizing the costs related to annual losses and investment for renovation of lines by imperialist competitive algorithm (ICA) to improve the productivity of the power distribution network. Backward/forward sweep load flow method has been used to solve the load flow problem in the power distribution networks. The mentioned optimization method has been tested on DAZ feeder in Ghaleganj town as test.
Vehicular network security had spanned and covered a wide range of security related issues. However solar energy harvesting Road Side Unit (RSU) security was not defined clearly, it is this aspect that is considered in this paper. In this work, we will suggest an RSU security model to protect it against different internal and external threats. The main goal is to protect RSU specific data (needed for its operation) as well as its functionality and accessibility. The suggested RSU security model must responds to many objectives, it should ensure that the administrative information exchanged is correct and undiscoverable (information authenticity and privacy), the source (e.g., VANET server) is who he claims to be (message integrity and source authentication) and the system is robust and available (using Intrusion Detection System (IDS)). In this paper, we suggest many techniques to strength RSU security and they were prototyped using an experimental model based on Ubicom IP2022 network processor development kit .
This paper focuses on designing distributed wireless sensor network gateways armed with Intrusion Detection System (IDS). The main contribution of this work is the attempt to insert IDS functionality into the gateway node (UBICOM IP2022 network processor chip) itself. This was achieved by building a light weight signature based IDS based on the famous open source SNORT IDS. Regarding gateway nodes, as they have limited processing and energy constrains, the addition of further tasks (the IDS program) may affects seriously on its performance, so that, the current design takes these constrains into consideration as a priority and use a special protocol to achieve this goal. In order to optimize the performance of the gateway nodes, some of the preprocessing tasks were offloaded from the gateway nodes to a suggested classification and processing server and a new searching algorithm was suggested. Different measures were taken to validate the design procedure and a detailed simulation model was built to discover the behavior of the system in different environments.
Clustering is one of the most energy-efficient techniques for extending the lifetime of wireless sensor networks (WSNs). In a clustered WSN, each sensor node transmits the data acquired from the sensing field to the leader node (cluster head). The cluster head (CH) is in charge of aggregating and routing the collected data to the Base station (BS) of the deployed network. Thereby, the selection of the optimum CH is still a crucial issue to reduce the consumed energy in each node and extend the network lifetime. To determine the optimal number of CHs, this paper proposes an Enhanced Fuzzy-based LEACH (E-FLEACH) protocol based on the Fuzzy Logic Controller (FLC). The FLC system relies on three inputs: the residual energy of each node, the distance of each node from the base station (sink node), as well as the node's centrality. The proposed protocol is implemented using the Castalia simulator in conjunction with OMNET++, and simulation results indicate that the proposed protocol outperforms the traditional LEACH protocol in terms of network lifetime, energy consumption, and stability.
In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error inherited in the RBF networks. The stability of the system with the combined control law guaranteed through Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and convergence.
Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. The Optimal Power Flow (OPF) has been widely used for both the operation and planning of a power system. The OPF is also suited for deregulated environment. Four different objective functions are considered in this study: (1) Improvement voltage profile (2) minimization of active power loss (3) maximum capacity of conductors (4) maximization of reliability level. The site and size of DG units are assumed as design variables. The results are discussed and compared with those of traditional distribution planning and also with Imperialist competitive algorithm (ICA). Key words: Distributed generation, distribution network planning, multi-objective optimization, and Imperialist competitive algorithm.
This work presents aneural and fuzzy based ECG signal recognition system based on wavelet transform. The suitable coefficients that can be used as a feature for each fuzzy network or neural network is found using a proposed best basis technique. Using the proposed best bases reduces the dimension of the input vector and hence reduces the complexity of the classifier. The fuzzy network and the neural network parameters are learned using back propagation algorithm.
In this paper, we focus on ensuring encrypted vehicular communication using wireless controller area network performance at high node densities, by means of Dedicated Short-Range Communication (DSRC) algorithms. We analyses the effect of the vehicular communication parameters, message-rate, data-rate, transmission power and carrier sensing threshold, on the application performance. After a state-of-the-art analysis, we propose a data-rate DSRC algorithm. Simulation studies show that DSRC performs better than other decentralized vehicular communication algorithms for a wide range of application requirements and densities. Vehicular communication plays one of the most important roles for future autonomous vehicle. We have systematically investigated the impact of vehicular communication using the MATLAB application platform and achieved an accuracy of 93.74% after encrypting all the communications between the vehicles and securing them by applying the encryption on V2V communication in comparison with the existing system of Sensor Networks which stands at 92.97%. The transmission time for the encryption is 165 seconds while the rate of encryption is as low as 120 Mbps for the proposed awareness range of vehicles to vehicle using DSRC algorithm in Wireless-Controller Area Network for communication. Experimental results show that our proposed method performs 3% better than the recently developed algorithms.
The phenomenal rise of the Internet in recent years, as well as the expansion of capacity in today’s networks, have provided both inspiration and incentive for the development of new services that combine phone, video, and text ”over IP.” Although unicast communications have been prevalent in the past, there is an increasing demand for multicast communications from both Internet Service Providers (ISPs) and content or media providers and distributors. Indeed, multicasting is increasingly being used as a green verbal exchange mechanism for institution-oriented programmers on the Internet, such as video conferencing, interactive college games, video on demand (VoD), TV over the Internet, e-learning, software programme updates, database replication, and broadcasting inventory charges. However, the lack of security within the multicast verbal exchange model prevents the effective and large-scale adoption of such important company multi-celebration activities. This situation prompted a slew of research projects that addressed a variety of issues related to multicast security, including confidentiality, authentication, watermarking, and access control. These issues should be viewed within the context of the safety regulations that work in the specific conditions. For example, in a public inventory charge broadcast, while identification is a vital necessity, secrecy is not. In contrast, video-convention programme requires both identification and confidentiality. This study gives a complete examination and comparison of the issues of group key management. Both network-dependent and network-independent approaches are used. The study also addresses the advantages, disadvantages, and security problems of various protocols.
The incredible growth of FPGA capabilities in recent years and the new included features have made them more and more attractive for numerous embedded systems. There is however an important shortcoming concerning security of data and design. Data security implies the protection of the FPGA application in the sense that the data inside the circuit and the data transferred to/from the peripheral circuits during the communication are protected. This paper suggests a new method to support the security of any FPGA platform using network processor technology. Low cost IP2022 UBICOM network processor was used as a security shield in front of any FPGA device. It was supplied with the necessary security methods such as AES ciphering engine, SHA-1, HMAC and an embedded firewall to provide confidentiality, integrity, authenticity, and packets filtering features.
Face recognition is the technology that verifies or recognizes faces from images, videos, or real-time streams. It can be used in security or employee attendance systems. Face recognition systems may encounter some attacks that reduce their ability to recognize faces properly. So, many noisy images mixed with original ones lead to confusion in the results. Various attacks that exploit this weakness affect the face recognition systems such as Fast Gradient Sign Method (FGSM), Deep Fool, and Projected Gradient Descent (PGD). This paper proposes a method to protect the face recognition system against these attacks by distorting images through different attacks, then training the recognition deep network model, specifically Convolutional Neural Network (CNN), using the original and distorted images. Diverse experiments have been conducted using combinations of original and distorted images to test the effectiveness of the system. The system showed an accuracy of 93% using FGSM attack, 97% using deep fool, and 95% using PGD.
This paper presents a developed algorithm for reliability sensitivity analysis of engineering networks. Reliability Modeling is proposed for the Iraqi Kurdistan Regional Power Network (IKRPN) using Symbolic Reliability function of the model. The written Pascal code for the developed algorithm finds efficiently path sets and cut sets of the model. Reliability and Unreliability indices are found. The sensitivity of these indices are found with respect to the variation of the network’s elements reliabilities
The electrical load is affected by the weather conditions in many countries as well as in Iraq. The weather-sensitive electrical load is, usually, divided into two components, a weather-sensitive component, and a weather-insensitive component. The research provides a method for separating the weather-sensitive electrical load into five components. and aims to prove the efficiency of the five-component load Forecasting model. The artificial neural network was used to predict the weather-sensitive electrical load using the MATLAB R17a software. Weather data and loads were used for one year for Mosul City. The performance of the artificial neural network was evaluated using the mean squared error and the mean absolute percentage error. The results indicate the accuracy of the prediction model used, MAPE equal to 0.0402.
The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).
Computer network routing is performed based on routing protocol decisions. Open Shortest Path First OSPF is the most known routing protocol. It suffers from congestion problem since it generally uses single (least cost) path to deliver information. Some times OSPF delivers information using more than one path in the case of more than one path have the same cost value. This condition is rarely achieved in normal cases. In this work OSPF is developed to distribute information load across multiple paths and makes load distribution as general case for the routing protocol. The modification supposes no protocol replacement and uses the existing protocol facilities. This makes faster information delivery, load balancing, less congestion, and with little modification on the built in OSPF functions. Disjoint paths are calculated then the costs of the best set of them are adapted using approporate ratio.
A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.
Bin picking robots require vision sensors capable of recognizing objects in the bin irrespective of the orientation and pose of the objects inside the bin. Bin picking systems are still a challenge to the robot vision research community due to the complexity of segmenting of occluded industrial objects as well as recognizing the segmented objects which have irregular shapes. In this paper a simple object recognition method is presented using singular value decomposition of the object image matrix and a functional link neural network for a bin picking vision system. The results of the functional link net are compared with that of a simple feed forward net. The network is trained using the error back propagation procedure. The proposed method is robust for recognition of objects.
Automatic signature verification methods play a significant role in providing a secure and authenticated handwritten signature in many applications, to prevent forgery problems, specifically institutions of finance, and transections of legal papers, etc. There are two types of handwritten signature verification methods: online verification (dynamic) and offline verification (static) methods. Besides, signature verification approaches can be categorized into two styles: writer dependent (WD), and writer independent (WI) styles. Offline signature verification methods demands a high representation features for the signature image. However, lots of studies have been proposed for WI offline signature verification. Yet, there is necessity to improve the overall accuracy measurements. Therefore, a proved solution in this paper is depended on deep learning via convolutional neural network (CNN) for signature verification and optimize the overall accuracy measurements. The introduced model is trained on English signature dataset. For model evaluation, the deployed model is utilized to make predictions on new data of Arabic signature dataset to classify whether the signature is real or forged. The overall obtained accuracy is 95.36% based on validation dataset.
In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.
Energy limitations have become fundamental challenge for designing WSNs. Network lifetime is the most interested and important metric in WSNs. Many works have been developed for prolonging networks lifetime, in which one of the important work is the control of transmission power. This paper proposes a new fuzzy transmission power control technique that operate together with routing protocols for prolonging WSNs lifetime. Dijkstra shortest path routing is considered as the main routing protocol in this work. This paper mainly focuses on transmission power control scheme for prolonging WSNs lifetime. A performance comparison is depicted for maximum and controlled transmission power. Simulation results show an increase in network lifetime equals to 3.4776 for the proposed fuzzy control. The performance of the proposed fuzzy control technique involves a good improvement and contribution in the field of prolonging networks lifetime by using transmission power control.
Ad-Hoc networks have an adaptive architecture, temporarily configured to provide communication between wireless devices that provide network nodes. Forwarding packets from the source node to the remote destination node may require intermediate cooperative nodes (relay nodes), which may act selfishly because they are power-constrained. The nodes should exhibit cooperation even when faced with occasional selfish or non-cooperative behaviour from other nodes. Several factors affect the behaviour of nodes; those factors are the number of packets required to redirect, power consumption per node, and power constraints per node. Power constraints per node and grade of generosity. This article is based on a dynamic collaboration strategy, specifically the Generous Tit-for-Tat (GTFT), and it aims to represent an Ad-Hoc network operating with the Generous Tit-for-Tat (GTFT) cooperation strategy, measure statistics for the data, and then analyze these statistics using the Taguchi method. The transfer speed and relay node performance both have an impact on the factors that shape the network conditions and are subject to analysis using the Taguchi Method (TM). The analyzed parameters are node throughput, the amount of relay requested packets produced by a node per number of relays requested packets taken by a node, and the amount of accepted relay requested by a node per amount of relay requested by a node. A Taguchi L9 orthogonal array was used to analyze node behaviour, and the results show that the effect parameters were number of packets, power consumption, power constraint of the node, and grade of generosity. The tested parameters influence node cooperation in the following sequence: number of packets required to redirect (N) (effects on behaviour with a percent of 6.8491), power consumption per node (C) (effects on behaviour with a percent of 0.7467), power constraints per node (P) (effects on behaviour with a percent of 0.6831), and grade of generosity (ε) (effects on behaviour with a percent of 0.4530). Taguchi experiments proved that the grade of generosity (GoG) is not the influencing factor where the highest productivity level is, while the number of packets per second required to redirect also has an impact on node behaviour.
Nowadays, the Wireless Sensor Network (WSN) has materialized its working areas, including environmental engineering, agriculture sector, industrial, business applications, military, intelligent buildings, etc. Sensor networks emerge as an attractive technology with great promise for the future. Indeed, issues remain to be resolved in the areas of coverage and deployment, scalability, service quality, size, energy consumption and security. The purpose of this paper is to present the integration of WSNs for IoT networks with the intention of exchanging information, applying security and configuration. These aspects are the challenges of network construction in which authentication, confidentiality, availability, integrity, network development. This review sheds some light on the potential integration challenges imposed by the integration of WSNs for IoT, which are reflected in the difference in traffic features.
In this paper, enhancing dynamic performance in power systems through load frequency control (LFC) is explored across diverse operating scenarios. A new Neural Network Model Predictive Controller (NN-MPC) specifically tailored for two-zone load frequency power systems is presented. ” Make your paper more scientific. The NN-MPC marries the predictive accuracy of neural networks with the robust capabilities of model predictive control, employing the nonlinear Levenberg-Marquardt method for optimization. Utilizing local area error deviation as feedback, the proposed controller’s efficacy is tested against a spectrum of operational conditions and systemic variations. Comparative simulations with a Fuzzy Logic Controller (FLC) reveal the proposed NN-MPC’s superior performance, underscoring its potential as a formidable solution in power system regulation.
Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches, and is usually done for the purpose of loss reduction. Loss reduction can result in substantial benefits for a utility. Other benefits from loss reduction include increased system capacity, and possible deferment or elimination of capital expenditures for system improvements and expansion. There is also improved voltage regulation as a result of reducing feeder voltage drop. Research work included by this paper focuses on using branch exchange method to minimize losses and solve the problems over different radial configuration. Solution’s algorithm for loss minimization has been developed based on two stages of solution methodology. The first stage determines maximum loss-reduction loop by comparing the size of circles for every loop. In a distribution system, a loop is associated by a tie-line and hence there are several loops in the system. To obtain the maximum loss- reduction loop, size of modified zero loss-change circles are compared, and the loop within the largest circle is identified for maximum loss-reduction. The second stage determines the switching operation to be executed in that loop to reach a minimum loss network configuration by comparing the size of the loop circle for each branch-exchange. The smallest circle is to be identified for the best solution; the size of the loop circle is reduced when the losses are minimized. The performance of the proposed branch exchange method is tested on 16-bus distribution systems.
A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.
The objective in Data Grids is to reduce access and file (replica) transfer latencies, as well as to avoid single site congestion by the numerous requesters. To facilitate access and transfer of the data, the files of the Data Grid are distributed across the multiple sites. The effectiveness of a replica selection strategy in data grids depends on its ability to serve the requirement posed by the users' jobs. Most jobs are required to be executed at a specific execution time. To achieve the QoS perceived by the users, response time metrics should take into account a replica selection strategy. Total execution time needs to factor latencies due to network transfer rates and latencies due to search and location. Network resources affect the speed of moving the required data and searching methods can reduce scope for replica selection. This paper presents a replica selection strategy that adapts its criteria dynamically so as to best approximate application providers’ and clients’ requirements. We introduce a new selection technique (EST) that shows improved performance over the more common algorithms.
Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the Amor mother wavelet function has outperformed the results of state-of-the-art studies.
In this paper describes the operation of power system networks to be nearest to stability rated values limits. State estimation for monitoring and protection power system is very important because it provides a real-time (RT) Phase angle of different nodes of accuracy and then analysis and decided to choose control way (methods). In order to detect the exact situation (instant state) for power system networks parameters. In this paper proposes a new monitoring and analysis system state estimation method integrating with MATLAB environment ability, by using phasor measurement units (PMU's) technology, by this system the estimation problem, iterations numbers, and processing time will reduce. The measurements of phasors value of voltage signal and current estimated and analyzed. Mat lab/PSAT package use as a tool to design and simulate four electrical power systems networks such as INSG 24 buses, IEEE14 bus, Diyala city 10buses (IRAQ), and IEEE6 bus and then installed and applied PMU’s devices to each system. Simulation results show that the PMU's performances effectiveness appear clearly. All results show the validation of PMU’s devices as an estimator to power system networks states and a significant improvement in the accuracy of the calculation of network status. All results achieved and discussed through this paper setting up mathematical models with Graph Theoretic Procedure algorithm.
In different modern and future wireless communication networks, a large number of low-power user equipment (UE) devices like Internet of Things, sensor terminals, and smart modules have to be supported over constrained power and bandwidth resources. Therefore, wireless-powered communication (WPC) is considered a promising technology for varied applications in which the energy harvesting (EH) from radio frequency radiations is exploited for data transmission. This requires efficient resource allocation schemes to optimize the performance of WPC and prolong the network lifetime. In this paper, harvest-then-transmit-based WP non-orthogonal multiple access (WP-NOMA) system is designed with time-split (TS) and power control (PC) allocation strategies. To evaluate the network performance, the sum rate and UEs’ rates expressions are derived considering power-domain NOMA with successive interference cancellation detection. For comparison purposes, the rate performance of the conventional WP orthogonal multiple access (WP-OMA) is derived also considering orthogonal frequency-division multiple access and time-division multiple access schemes. Intensive investigations are conducted to obtain the best TS and PC resource parameters that enable maximum EH for higher data transmission rates compared with the reference WP-OMA techniques. The achieved outcomes demonstrate the effectiveness of designed resource allocation approaches in terms of the realized sum rate, UE’s rate, rate region, and fairness without distressing the restricted power of far UEs.
CMOS stack circuits find applications in multi-input exclusive-OR gates and barrel-shifters. Specifically, in wide fan-in CMOS NAND/NOR gates, the need arises to connect a relatively large number of NMOS/PMOS transistors in series in the pull-down network (PDN)/pull-up network (PUN). The resulting time delay is relatively high and the power consumption accordingly increases due to the need to deal with the various internal capacitances. The problem gets worse with increasing the number of inputs. In this paper, the performance of conventional static CMOS stack circuits is investigated quantitatively and a figure of merit expressing the performance is defined. The word “performance” includes the following three metrics; the average propagation delay, the power consumption, and the area. The optimum scaling factor corresponding to the best performance is determined. It is found that under the worst-case low-to-high transition at the output (that is, the input combination that results in the longest time delay in case of logic “1” at the output), there is an optimum value for the sizing of the PDN in order to minimize the average propagation delay. The proposed figure of merit is evaluated for different cases with the results discussed. The adopted models and the drawn conclusions are verified by comparison with simulation results adopting the 45 nm CMOS technology.
In this paper, Mosul University Wireless Local Area Network (MUWLAN) security will be evaluated. The evaluation was made to test the confidentiality, integrity and availability of the MUWLAN. Addressing these issues will help in ensuring tighter security. After the evaluation, serious security pitfalls were found that can allow any attacker to have access to the MUWLAN and uses their internet service. Based on the obtained results, suggestions for improvement were made to tighten the security of Mosul University wireless local area network. Keyword : - WLAN security, WEP encryption, PTW attack, Wireshark, MITM attack, SSLStrip attack.
Kinship (Familial relationships) detection is crucial in many fields and has applications in biometric security, adoption, forensic investigations, and more. It is also essential during wars and natural disasters like earthquakes since it may aid in reunion, missing person searches, establishing emergency contacts, and providing psychological support. The most common method of determining kinship is DNA analysis which is highly accurate. Another approach, which is noninvasive, uses facial photos with computer vision and machine learning algorithms for kinship estimation. Each part of the Human -body has its own embedded information that can be extracted and adopted for identification, verification, or classification of that person. Kinship recognition is based on finding traits that are shared by every family. We investigate the use of hand geometry for kinship detection, which is a new approach. Because of the available hand image Datasets do not contain kinship ground truth; therefore, we created our own dataset. This paper describes the tools, methodology, and details of the collected MKH, which stands for the Mosul Kinship Hand, images dataset. The images of MKH dataset were collected using a mobile phone camera with a suitable setup and consisted of 648 images for 81 individuals from 14 families (8 hand situations per person). This paper also presents the use of this dataset in kinship prediction using machine learning. Google MdiaPipe was used for hand detection, segmentation, and geometrical key points finding. Handcraft feature extraction was used to extract 43 distinctive geometrical features from each image. A neural network classifier was designed and trained to predict kinship, yielding about 93% prediction accuracy. The results of this novel approach demonstrated that the hand possesses biometric characteristics that may be used to establish kinship, and that the suggested method is a promising way as a kinship indicator.
In a human-robot interface, the prediction of motion, which is based on context information of a task, has the potential to improve the robustness and reliability of motion classification to control human-assisting manipulators. The objective of this work is to achieve better classification with multiple parameters using K-Nearest Neighbor (K-NN) for different movements of a prosthetic arm. The proposed structure is simulated using MATLAB Ver. R2009a, and satisfied results are obtained by comparing with the conventional recognition method using Artificial Neural Network (ANN). Results show the proposed K-NN technique achieved a uniformly good performance with respect to ANN in terms of time, which is important in recognition systems, and better accuracy in recognition when applied to lower Signal-to-Noise Ratio (SNR) signals.
In this paper, an Industrial machine vision system incorporating Optical Character Recognition (OCR) is employed to inspect the marking on the Integrated Circuit (IC) Chips. This inspection is carried out while the ICs are coming out from the manufacturing line. A TSSOP-DGG type of IC package from Texas Instrument is used in the investigation. The inspection has to identify the print errors such as illegible character, missing characters and up side down printing. The vision inspection of the printed markings on the IC chip is carried out in three phases namely image preprocessing, feature extraction and classification. Projection profile and Moments are employed for feature extraction. A neural network is used as a classifier to detect the defectively marked IC chips. Both feature extraction methods are compared in terms of marking inspection time.
COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.
Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.
According to the growing interest in the soft robotics research field, where various industrial and medical applications have been developed by employing soft robots. Our focus in this paper will be the Pneumatic Muscle Actuator (PMA), which is the heart of the soft robot. Achieving an accurate control method to adjust the actuator length to a predefined set point is a very difficult problem because of the hysteresis and nonlinearity behaviors of the PMA. So the construction and control of a 30 cm soft contractor pneumatic muscle actuator (SCPMA) were done here, and by using different strategies such as the PID controller, Bang-Bang controller, Neural network controller, and Fuzzy controller, to adjust the length of the (SCPMA) between 30 cm and 24 cm by utilizing the amount of air coming from the air compressor. All of these strategies will be theoretically implemented using the MATLAB/Simulink package. Also, the performance of these control systems will be compared with respect to the time-domain characteristics and the root mean square error (RMSE). As a result, the controller performance accuracy and robustness ranged from one controller to another, and we found that the fuzzy logic controller was one of the best strategies used here according to the simplicity of the implementation and the very accurate response obtained from this method.
In recent years, increased importance of Smart Grid, which includes monitoring and control the consumption of customers of electric power. In this paper, Wireless Smart Electrical Power Meter has been designed and implemented which ZigBee wireless sensor network (WSN) will be used for wireless electrical power meter communication supported by PIC microcontroller which used for power unit measurements. PIC microcontroller will be used for evaluating all electric power parameters at costumer side like V rms , I rms , KWh, and PF, and then all these parameters will be send to base station through wireless network in order to be calibrated and monitored.
Vehicle Ad-hoc Network (VANET) is a type of wireless network that enables communication between vehicles and Road Side Units (RSUs) to improve road safety, traffic efficiency, and service delivery. However, the widespread use of vehicular networks raises serious concerns about users’ privacy and security. Privacy in VANET refers to the protection of personal information and data exchanged between vehicles, RSUs, and other entities. Privacy issues in VANET include unauthorized access to location and speed information, driver and passenger identification, and vehicle tracking. To ensure privacy in VANET, various technologies such as pseudonymization, message authentication, and encryption are employed. When vehicles frequently change their identity to avoid tracking, message authentication ensures messages are received from trusted sources, and encryption is used to prevent unauthorized access to messages. Therefore, researchers have presented various schemes to improve and enhance the privacy efficiency of vehicle networks. This survey article provides an overview of privacy issues as well as an in-depth review of the current state-of-the-art pseudonym-changing tactics and methodologies proposed.
In this paper a fully neural network-based structure have been proposed to control speeds of rolling stands of a steel rolling mill. The structure has property of controlling the motors speed such that the loop height between each successive stands tracks the required height reference. Synchronization between these stands is also maintained so that the metal flow rate from first stand to the last stand is kept constant. This structure is robust against the disturbance effects such as, torque loading, plant parameter change... etc. The results reveal performance of the structure as a comparison with the conventional control method for a practical worksheet data.
In this paper, high tracking performance control structure for rigid robot manipulator is proposed. PD-like Sugano type fuzzy system is used as a main controller, while fuzzy-neural network (FNN) is used as a compensator for uncertainties by minimizing suitable function. The output of FNN is added to the reference trajectories to modify input error space, so that the system robust to any change in system parameters. The proposed structure is simulated and compared with computed torque controller. The simulation study has showed the validity of our structure, also showed its superiority to computed torque controller.
Most of routing protocols used for Mobile Ad hoc Network (MANET), such as Ad hoc on demand distance vector (AODV) routing, uses minimum hops as the only metric for choosing a route. This decision might lead to cause some nodes become congested which will degrade the network performance. This paper proposes an improvement of AODV routing algorithm by making routing decisions depend on fuzzy cost based on the delay in conjunction with number of hops in each path. Our simulation was carried out using OMNET++ 4.0 simulator and the evaluation results show that the proposed Fuzzy Multi-Constraint AODV routing performs better than the original AODV in terms of average end-to-end delay and packet delivery.
The segmentation methods for image processing are studied in the presented work. Image segmentation can be defined as a vital step in digital image processing. Also, it is used in various applications including object co-segmentation, recognition tasks, medical imaging, content based image retrieval, object detection, machine vision and video surveillance. A lot of approaches were created for image segmentation. In addition, the main goal of segmentation is to facilitate and alter the image representation into something which is more important and simply to be analyzed. The approaches of image segmentation are splitting the images into a few parts on the basis of image’s features including texture, color, pixel intensity value and so on. With regard to the presented study, many approaches of image segmentation are reviewed and discussed. The techniques of segmentation might be categorized into six classes: First, thresholding segmentation techniques such as global thresholding (iterative thresholding, minimum error thresholding, otsu's, optimal thresholding, histogram concave analysis and entropy based thresholding), local thresholding (Sauvola’s approach, T.R Singh’s approach, Niblack’s approaches, Bernsen’s approach Bruckstein’s and Yanowitz method and Local Adaptive Automatic Binarization) and dynamic thresholding. Second, edge-based segmentation techniques such as gray-histogram technique, gradient based approach (laplacian of gaussian, differential coefficient approach, canny approach, prewitt approach, Roberts approach and sobel approach). Thirdly, region based segmentation approaches including Region growing techniques (seeded region growing (SRG), statistical region growing, unseeded region growing (UsRG)), also merging and region splitting approaches. Fourthly, clustering approaches, including soft clustering (fuzzy C-means clustering (FCM)) and hard clustering (K-means clustering). Fifth, deep neural network techniques such as convolution neural network, recurrent neural networks (RNNs), encoder-decoder and Auto encoder models and support vector machine. Finally, hybrid techniques such as evolutionary approaches, fuzzy logic and swarm intelligent (PSO and ABC techniques) and discusses the pros and cons of each method.
This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.
Arial images are very high resolution. The automation for map generation and semantic segmentation of aerial images are challenging problems in semantic segmentation. The semantic segmentation process does not give us precise details of the remote sensing images due to the low resolution of the aerial images. Hence, we propose an algorithm U-Net Architecture to solve this problem. It is classified into two paths. The compression path (also called: the encoder) is the first path and is used to capture the image's context. The encoder is just a convolutional and maximal pooling layer stack. The symmetric expanding path (also called: the decoder) is the second path, which is used to enable exact localization by transposed convolutions. This task is commonly referred to as dense prediction, which is completely connected to each other and also with the former neurons which gives rise to dense layers. Thus it is an end-to-end fully convolutional network (FCN), i.e. it only contains convolutional layers and does not contain any dense layer because of which it can accept images of any size. The performance of the model will be evaluated by improving the image using the proposed method U-NET and obtaining an improved image by measuring the accuracy compared with the value of accuracy with previous methods.
An efficient feedback scheduling scheme based on the proposed Feed Forward Neural Network (FFNN) scheme is employed to improve the overall control performance while minimizing the overhead of feedback scheduling which exposed using the optimal solutions obtained offline by mathematical optimization methods. The previously described FFNN is employed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. The proposed intelligent scheduler will be examined with different optimization algorithms. An inverted pendulum cost function is used in these experiments. Then, simulation of three inverted pendulums as intelligent Real Time System (RTS) is described in details. Numerical simulation results demonstrates that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling
Energy consumption problems in wireless sensor networks are an essential aspect of our days where advances have been made in the sizes of sensors and batteries, which are almost very small to be placed in the patient's body for remote monitoring. These sensors have inadequate resources, such as battery power that is difficult to replace or recharge. Therefore, researchers should be concerned with the area of saving and controlling the quantities of energy consumption by these sensors efficiently to keep it as long as possible and increase its lifetime. In this paper energy-efficient and fault-tolerance strategy is proposed by adopting the fault tolerance technique by using the self-checking process and sleep scheduling mechanism for avoiding the faults that may cause an increase in power consumption as well as energy-efficient at the whole network. this is done by improving the LEACH protocol by adding these proposed strategies to it. Simulation results show that the recommended method has higher efficiency than the LEACH protocol in power consumption also can prolong the network lifetime. In addition, it can detect and recover potential errors that consume high energy.
The primary goal of this study is to investigate and evaluate the performance of wireless Ad-Hoc routing protocols using the OPNET simulation tool, as well as to recommend the most effective routing strategies for the wireless mesh environment. Investigations have been testified to analyze the performance of the reactive and proactive Ad-Hoc routing protocols in different scenarios. Application and wireless metrics were configured that were used to test and evaluate the performance of routing protocols. The application metric includes web browsing metrics such as HTTP page response time, voice and video metrics such as end-to-end delay, and delay variation. The wireless network metrics include wireless media access delay, data dropped, wireless load, wireless retransmission attempts, and Packet Delivery Ratio. The simulations results show that the AODV overcome DSR and OLSR in terms of PDR (76%), wireless load (22.692 Mbps), voice delay variation (102.685 ms), HTTP page response time (15.317 sec), voice and video packet end-to-end delay (206.527 and 25.294 ms), wireless media access delay (90.150 ms), data dropped (10.003 Mbps), wireless load (22.692 Mbps), and wireless retransmission attempts (0.392 packets).
Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficients are very important in communication systems, but the LMS adaptive noise cancellation suffers response degrades and slow convergence rate under low Signal-to- Noise ratio (SNR) condition. This paper presents an adaptive noise canceller algorithm based fuzzy and neural network. The major advantage of the proposed system is its ease of implementation and fast convergence. The proposed algorithm is applied to noise canceling problem of long distance communication channel. The simulation results showed that the proposed model is effectiveness.
Non-ideal channel conditions degrade the performance of wireless networks due to the occurrence of frame errors. Most of the well-known works compute the saturation throughput and packet delay for the IEEE 802.11 Distributed Coordination Function (DCF) protocol with the assumption that transmission is carried out via an ideal channel (i.e., no channel bit errors or hidden stations), and/or the errors exist only in data packets. Besides, there are no considerations for transmission errors in the control frames (i.e., Request to Send (RTS), Clear to Send (CTS), and Acknowledgement (ACK)). Considering the transmission errors in the control frames adds complexity to the existing analysis for the wireless networks. In this paper, an analytical model to evaluate the Medium Access Control (MAC) layer saturation throughput and packet delay of the IEEE 802.11g and IEEE 802.11n protocols in the presence of both collisions and transmission errors in a non-ideal wireless channel is provided. The derived analytical expressions reveal that the saturation throughput and packet delay are affected by the network size (n), packet size, minimum backoff window size (W min ), maximum backoff stage (m), and bit error rate (BER). These results are important for protocol optimization and network planning in wireless networks .
Transmitting binary data across a network should generally avoid transmitting raw binary data over the medium for several reasons, one would be that the medium may be a textual one and may not accept or correctly handle raw bitstream, another would be that some protocols may misinterpret the meaning of the bits and causes a problem or even loss of the data. To make the data more readable and would avoid misinterpretation by different systems and environments, this paper introduces encoding two of the most broadly used data interchange formats, XML and JSON, into the Base64 which is an encoding scheme that converts binary data to an ASCII string format by using a radix-64 representation. This process, will, make the data more readable and would avoid misinterpretation by different systems and environments. The results reflect that encoding data in Base64 before the transmission will present many advantages including readability and integrity, it will also enable us to transmit binary data over textual mediums, 7 Bit protocols such as SMTP, and different network hardware without risking misinterpretation.
In this study, a distributed power control algorithm is proposed for Dynamic Frequency Hopping Optical-CDMA (DFH-OCDMA) system. In general, the DFH-OCDMA can support higher number of simultaneous users compared to other OCDMA techniques. However, the performance of such system degrades significantly as the received power does lower than its minimum threshold. This may obviously occur in a DFH-OCDMA network with near-far problem which consist of different fiber lengths among the users, that resulting to unequal power attenuation. The power misdistribution among simultaneous active users at the star coupler would degrade the Bit Error Rate (BER) performance for users whose transmitting signals with longer fiber lengths. In order to solve these problems, we propose an adaptive distributed power control technique for DFH-OCDMA to satisfy the target Signal to Noise Ratio (S to R) for all users. Taking into account the noise effects of Multiple Access Interference (MAI), Phase Induced Intensity oise (PII) and shot noise, the system can support 100% of users with power control as compared to 33% without power control when the initial transmitted power was -1dBm with 30 simultaneous users.
With the rapid development of multimedia technology, securing the transfer of images becomes an urgent matter. Therefore, designing a high-speed/secure system for color images is a real challenge. A nine-dimensional (9D) chaotic- based digital/optical encryption schem is proposed for double-color images in this paper. The scheme consists of cascaded digital and optical encryption parts. The nine chaotic sequences are grouped into three sets, where each set is responsible for encryption one of the RGB channels independently. One of them controls the fusion, XOR operation, and scrambling-based digital part. The other two sets are used for controlling the optical part by constructing two independent chaotic phase masks in the optical Fourier transforms domain. A denoising convolution neural network (DnCNN) is designed to enhance the robustness of the decrypted images against the Gaussian noise. The simulation results prove the robustness of the proposed scheme as the entropy factor reaches an average of 7.997 for the encrypted color lena-baboon images with an infinite peak signal-to-noise ratio (PSNR) for the decrypted images. The designed DnCNN operates efficiently with the proposed encryption scheme as it enhances the performance against the Gaussian noise, where the PSNR of the decrypted Lena image is enhanced from 27.01 dB to 32.56 dB after applying the DnCNN.
Development of distribution systems result in higher system losses and poor voltage regulation. Consequently, an efficient and effective distribution system has become more urgent and important. Hence proper selection of conductors in the distribution system is important as it determines the current density and the resistance of the line. This paper examines the use of different evolutionary algorithms, genetic algorithm (GA), to optimal branch conductor selection in planning radial distribution systems with the objective to minimize the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity. Furthermore, The Backward-Forward sweep iterative method was adopted to solve the radial load flow analysis. Simulations are carried out on 69-bus radial distribution network using GA approach in order to show the accuracy as well as the efficiency of the proposed solution technique.
A wireless body area network (WBAN) connects separate sensors in many places of the human body, such as clothes, under the skin. WBAN can be used in many domains such as health care, sports, and control system. In this paper, a scheme focused on managing a patient’s health care is presented based on building a WBAN that consists of three components, biometric sensors, mobile applications related to the patient, and a remote server. An excellent scheme is proposed for the patient’s device, such as a mobile phone or a smartwatch, which can classify the signal coming from a biometric sensor into two types, normal and abnormal. In an abnormal signal, the device can carry out appropriate activities for the patient without requiring a doctor as a first case. The patient does not respond to the warning message in a critical case sometimes, and the personal device sends an alert to the patient’s family, including his/her location. The proposed scheme can preserve the privacy of the sensitive data of the patient in a protected way and can support several security features such as mutual authentication, key management, anonymous password, and resistance to malicious attacks. These features have been proven depending on the Automated Validation of Internet Security Protocols and Applications. Moreover, the computation and communication costs are efficient compared with other related schemes.
The growth in energy consumption and the lack of access to the electricity network in remote areas, rising fossil fuel prices, the importance of using renewable energy in these areas is increasing. The integration of these resources to provide local loads has introduced a concept called microgrid. Optimal utilization of renewable energy systems is one of their most important issues. Due to the high price of equipment such as wind turbine, solar panels and batteries, capacity sizing of the equipment is vital. In this paper, presents an algorithm based on techno-economic for assessment optimum design of a renewable energy system including photovoltaic system, batteries and wind turbine is presented.
In recent years, symbolic analysis has become a well-established technique in circuit analysis and design. The symbolic expression of network characteristics offers convenience for frequency response analysis, sensitivity computation, and fault diagnosis. The aim of the paper is to present a method for symbolic analysis that depends on the use of the wavelet transform (WT) as a tool to accelerate the solution of the problem as compared with the numerical interpolation method that is based on the use of the fast Fourier transform (FFT).
In this paper, a fuzzy based controller for boost type AC/DC converter has been presented. Its operation and performance have been investigated through its simulation in the environment of Mat Lab. The system has been tested under various loading conditions. The obtained results showed that this fuzzy based controller can effectively control the power factor and the harmonic contents of the current drawn from the power factor system distribution network.
Microgrids (ℳ-grids) can be thought of as a small-scale electrical network comprised of a mix of Distributed Generation (DG) resources, storage devices, and a variety of load species. It provides communities with a stable, secure, and renewable energy supply in either off-grid (grid-forming) or on-grid (grid-following) mode. In this work, a control strategy of coordinated power management for a Low Voltage (LV) ℳ-grid with integration of solar Photovoltaic (PV), Battery Energy Storage System (BESS) and three phase loads operated autonomously or connected to the utility grid has been created and analyzed in the Matlab Simulink environment. The main goal expressed here is to achieve the following points: (i) grid following, grid forming modes, and resynchronization mode between them, (ii) Maximum Power Point Tracking (MPPT) from solar PV using fuzzy logic technique, and active power regulator based boost converter using a Proportional Integral (PI) controller is activated when a curtailment operation is required, (iii) ℳ-grid imbalance compensation (negative sequence) due to large single-phase load is activated, and (iv) detection and diagnosis the fault types using Discrete Wavelet Transform (DWT). Under the influence of irradiance fluctuation on solar plant, the proposed control technique demonstrates how the adopted system works in grid- following mode (PQ control), grid- formation, and grid resynchronization to seamlessly connect the ℳ-grid with the main distribution system. In this system, a power curtailment management system is introduced in the event of a significant reduction in load, allowing the control strategy to be switched from MPPT to PQ control, permitting the BESS to absorb excess power. Also, in grid-following mode, the BESS's imbalance compensation mechanism helps to reduce the negative sequence voltage that occurs at the Point of Common Coupling (PCC) bus as a result of an imbalance in the grid's power supply. In addition to the features described above, this system made use of DWT to detect and diagnose various fault conditions.
Self-driving cars are a fundamental research subject in recent years; the ultimate goal is to completely exchange the human driver with automated systems. On the other hand, deep learning techniques have revealed performance and effectiveness in several areas. The strength of self-driving cars has been deeply investigated in many areas including object detection, localization as well, and activity recognition. This paper provides an approach to deep learning; which combines the benefits of both convolutional neural network CNN together with Dense technique. This approach learns based on features extracted from the feature extraction technique which is linear discriminant analysis LDA combined with feature expansion techniques namely: standard deviation, min, max, mod, variance and mean. The presented approach has proven its success in both testing and training data and achieving 100% accuracy in both terms.
The use of smart network applications based on the Internet of Things is increasing, which increases the attractiveness of malicious activities, leading to the need to increase the adequate security of these networks. In this paper, the latest recent breakthroughs in blockchain for the Internet of Things are examined in the context of electronic health (e-health), smart cities, smart transportation, and other applications in this article. Research gaps and possible solutions are discussed, such as security, connection, transparency, privacy, and the IoT's blockchain regulatory challenges. In addition, the most important consensus algorithms used in the blockchain have been discussed, including Proof of Work, Proof of Stake, and Proof of Authority, each of which operates within certain rules.
In This paper presents an approach for optimal placement and sizing of fixed capacitor banks and also optimal conductor selection in radial distribution networks for the purpose of economic minimization of loss and enhancement of voltage. The objective function includes the cost of power losses, voltage profile, fixed capacitor banks and also type of conductor selection. Constraints include voltage limit, maximum permissible carrying current of conductors, size of available capacitors and type of conductors. The optimization problem is solved by the Imperialism Competitive algorithm method and the size and site capacitor banks and type of conductors is determined. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman city, Iran and the simulation results are presented and discussed.
Given the role that pipelines play in transporting crude oil, which is considered the basis of the global economy and across different environments, hundreds of studies revolve around providing the necessary protection for it. Various technologies have been employed in this pursuit, differing in terms of cost, reliability, and efficiency, among other factors. Computer vision has emerged as a prominent technique in this field, albeit requiring a robust image-processing algorithm for spill detection. This study employs image segmentation techniques to enable the computer to interpret visual information and images effectively. The research focuses on detecting spills in oil pipes caused by leakage, utilizing images captured by a drone equipped with a Raspberry Pi and Pi camera. These images, along with their global positioning system (GPS) location, are transmitted to the base station using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol. At the base station, deep learning techniques, specifically Holistically-Nested Edge Detection (HED) and extreme inception (Xception) networks, are employed for image processing to identify contours. The proposed algorithm can detect multiple contours in the images. To pinpoint a contour with a black color, representative of an oil spill, the CIELAB color space (LAB) algorithm effectively removes shadow effects. If a contour is detected, its area and perimeter are calculated to determine whether it exceeds a certain threshold. The effectiveness of the proposed system was tested on Iraqi oil pipeline systems, demonstrating its capability to detect spills of different sizes.
The scarcity of clean water resources around the globe has generated a need for their optimum utilization. Internet of Things (IoT) solutions, based on the application-specific sensors’ data acquisition and intelligent processing, are bridging the gaps between the cyber and physical worlds. IoT based smart irrigation management systems can help in achieving optimum water- resource utilization in the precision farming landscape. This paper presents an open-source technology-based smart system to predict the irrigation requirements of a field using the sensing of ground parameters like soil moisture, soil temperature, and environmental conditions along with the weather forecast data from the Internet. The sensing nodes, involved in the ground and environmental sensing, consider soil moisture, air temperature, and relative humidity of the crop field. This mainly focused on wastage of water, which is a major concern of the modern era. It is also time-saving, allows a user to monitor environmental data for agriculture using a web browser and Email, cost-effectiveness, environmental protection, low maintenance and operating cost and efficient irrigation service. The proposed system is made up of two parts: hardware and software. The hardware consists of a Base Station Unit (BSU) and several Terminal Nodes (TNs). The software is made up of the programming of the Wi-Fi network and the system protocol. In this paper, an MQTT (Message Queue Telemetry Transportation) broker was built on the BSU and TU board.
Wavelet-based algorithms are increasingly used in the source coding of remote sensing, satellite and other geospatial imagery. At the same time, wavelet-based coding applications are also increased in robust communication and network transmission of images. Although wireless multimedia sensors are widely used to deliver multimedia content due to the availability of inexpensive CMOS cameras, their computational and memory resources are still typically very limited. It is known that allowing a low-cost camera sensor node with limited RAM size to perform a multi-level wavelet transform, will in return limit the size of the acquired image. Recently, fractional wavelet filter technique became an interesting solution to reduce communication energy and wireless bandwidth, for resource-constrained devices (e.g. digital cameras). The reduction in the required memory in these fractional wavelet transforms is achieved at the expense of the image quality. In this paper, an adaptive fractional artifacts reduction approach is proposed for efficient filtering operations according to the desired compromise between the effectiveness of artifact reduction and algorithm simplicity using some local image features to reduce boundaries artifacts caused by fractional wavelet. Applying such technique on different types of images with different sizes using CDF 9/7 wavelet filters results in a good performance.
This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.
Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.
In this paper we present the details of methodology pursued in implementation of an HMI and Demo Temperature Monitoring application for wireless sensor-based distributed control systems. The application of WSN for a temperature monitoring and control is composed of a number of sensor nodes (motes) with a networking capability that can be deployed for monitoring and control purposes. The temperature is measured in the real time by the sensor boards that sample and send the data to the monitoring computer through a base station or gateway. This paper proposes how such monitoring system can be setup emphasizing on the aspects of low cost, energy-efficient, easy ad-hoc installation and easy handling and maintenance. This paper focuses on the overall potential of wireless sensor nodes and networking in industrial applications. A specific case study is given for the measurement of temperature (with thermistor or thermocouple), humidity, light and the health of the WSN. The focus was not on these four types of measurements and analysis but rather on the design of a communication protocol and building of an HMI software for monitoring. So, a set of system design requirements are developed that covered the use of the wireless platforms, the design of sensor network, the capabilities for remote data access and management, the connection between the WSN and an HMI software designed with MATLAB.
In recent years, symbolic analysis has become a well-established technique in circuit analysis and design. The symbolic expression of network characteristics offers convenience for frequency response analysis, sensitivity computation, and fault diagnosis. The aim of the paper is to present a method for symbolic analysis that depends on the use of the wavelet transform (WT) as a tool to accelerate the solution of the problem as compared with the numerical interpolation method that is based on the use of the fast Fourier transform (FFT).
Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.
Everything in its way to be computerized and most of the objects are coming to be smart in present days. Modern Internet of Thing (IoT) allows these objects to be on the network by using IoT platforms. IoT is a smart information society that consists of smart devices; these devices can communicate with each other without human's intervention. IoT systems require flexible platforms. Through the use of Field Programmable Gate Array (FPGA), IoT devices can interface with the outside world easily with low power consumption, low latency, and best determinism. FPGAs provide System on Chip (SoC) technique due to FPGAs scalability which enables the designer to implement and integrate large number of hardware clocks at single chip. FPGA can be deemed as a special purpose reprogrammable processor since it can process signals at its input pins, manipulate them, and give off signals on the output pins. In this paper, using FPGA for IoT is the limelight.
Recently, the incorporation of state-of-the-art technology such as Electronic Healthcare Records (EHRs), networks, and cloud computing has transformed the traditional healthcare system. However, security problems have arisen as a result of the integration of technology. Secure remote user authentication is a core part of the healthcare system to validate the user's identification via an unsecure communication network. Since then, several remote user authentication schemes have been presented, each with its own set of pros and limitations. As a result, security, malicious attacks and privacy concerns are considered one of the main challenges related to the healthcare system. In this paper, we propose a safe user authentication scheme for patients in the healthcare system that overcomes these flaws and confirms the security of the proposed work using scyther, a formal security tool. In the healthcare environment, our work provides an effective means to construct an environment capable of setting, registering, storing, searching, analyzing, authentication, and verifying electronic healthcare information in order to protect the information of patients. Furthermore, our suggested scheme uses symmetric encryption based on the crypto- hash function for accessing the anomaly of the patient's identity and One-Time Password (OTP). Towards the end of the study, the performance analysis results indicate a delicate balance of security and performance that is frequently lacking in previous works.
The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP).CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID) controller and the second are intelligent controllers (fuzzy and neural controllers).The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.
The hybrid AC/DC microgrid is considered to be more and more popular in power systems as increasing loads. In this study, it is presented that the hybrid AC/DC microgrid is modeled with some renewable energy sources (e.g. solar energy, wind energy) in the residential of the consumer in order to meet the demand. The power generation and consumption are undergoing a major transformation. One of the tendencies is to integrate microgrids into the distribution network with high penetration of renewable energy resources. In this paper, a new distributed coordinated control is proposed for hybrid microgrid, which could apply to both grid-connected mode and islanded mode with hybrid energy resources and variable loads. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. Also, the maximum power point tracking technique is applied to both photovoltaic stations and wind turbines to extract the maximum power from the hybrid power system during the variation of the environmental conditions. Finally, a simulation model is built with a photovoltaic, wind turbine, hybrid microgrid as the paradigm, which can be applied to different scenarios, such as small-sized commercial and residential buildings. The simulation results have verified the effectiveness and feasibility of the introduced strategy for a hybrid microgrid operating in different modes
This work presents a wireless communication network (WCN) infrastructure for the smart grid based on the technology of Worldwide Interoperability for Microwave Access (WiMAX) to address the main real-time applications of the smart grid such as Wide Area Monitoring and Control (WAMC), video surveillance, and distributed energy resources (DER) to provide low cost, flexibility, and expansion. Such wireless networks suffer from two significant impairments. On one hand, the data of real- time applications should deliver to the control center under robust conditions in terms of reliability and latency where the packet loss is increased with the increment of the number of industrial clients and transmission frequency rate under the limited capacity of WiMAX base station (BS). This research suggests wireless edge computing using WiMAX servers to address reliability and availability. On the other hand, BSs and servers consume affected energy from the power grid. Therefore, the suggested WCN is enhanced by green self-powered based on solar energy to compensate for the expected consumption of energy. The model of the system is built using an analytical approach and OPNET modeler. The results indicated that the suggested WCN based on green WiMAX BS and green edge computing can handle the latency and data reliability of the smart grid applications successfully and with a self-powered supply. For instance, WCN offered latency below 20 msec and received data reliability up to 99.99% in the case of the heaviest application in terms of data.
The reliability of power system under fault susceptible environment has become major challenge for the power sector units. The injection of renewable power source has increased the complexity for distribution system and to deal with massive network, evolution of smart-grid has been enforced, which works in an automated fashion to improve overall reliability, efficiency and quality of the system. Proactive Self-healing is a critical feature of smart-grid. This paper tries to explain the concept sensing the occurrence of fault beforehand and providing possible solution for self-healing in smart grid. The fundamental base for incorporating afore discussed technology viz. understanding nature of fault, sources of fault and implementation of effective measuring techniques are enumerated in paper briefly. Support required in terms of technology is reviewed towards the end followed by a case study of practical implementation of self-healing control in a distribution system.
The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.
Data-intensive science is a critical science paradigm that interferes with all other sciences. Data mining (DM) is a powerful and useful technology with wide potential users focusing on important meaningful patterns and discovers a new knowledge from a collected dataset. Any predictive task in DM uses some attribute to classify an unknown class. Classification algorithms are a class of prominent mathematical techniques in DM. Constructing a model is the core aspect of such algorithms. However, their performance highly depends on the algorithm behavior upon manipulating data. Focusing on binarazaition as an approach for preprocessing, this paper analysis and evaluates different classification algorithms when construct a model based on accuracy in the classification task. The Mixed National Institute of Standards and Technology (MNIST) handwritten digits dataset provided by Yann LeCun has been used in evaluation. The paper focuses on machine learning approaches for handwritten digits detection. Machine learning establishes classification methods, such as K-Nearest Neighbor(KNN), Decision Tree (DT), and Neural Networks (NN). Results showed that the knowledge-based method, i.e. NN algorithm, is more accurate in determining the digits as it reduces the error rate. The implication of this evaluation is providing essential insights for computer scientists and practitioners for choosing the suitable DM technique that fit with their data.
This paper presents new device to simulate and inject a 4-20 mA current signal to PLC and control on this signal wirelessly. The proposed simulator device has been designed and implemented by a PIC 18f4520 microcontroller and an Ethernet click. This device is connected to Wireless Local Area Network (WLAN) via Wi-Fi router using TCP/IP protocol. The simulator has two channels for 4-20 mA current output signals with two channels for digital output signals, controlled by a laptop or a smart mobile. The purpose of this work is to demonstrate the usefulness of the Wi-Fi wireless technology for remote controlling on the 4-20 mA output current signal and the digital output signal in the designed simulator device. The experiments indicate that the proposed wireless simulator outputs the 4- 20 mA current with high accuracy and very fast response. The experiments also indicate that the proposed wireless simulator is easy, comfortable and convenient practically to use in the test operations of protections, interlocks and integrity of analog input channels for PLC compared to the wired simulator.
In this paper, a single-band printed rectenna of size (45×36) mm 2 has been designed and analyzed to work at WiFi frequency of 2.4 GHz for wireless power transmission. The antenna part of this rectenna has the shape of question mark patch along with an inverted L-shape resonator and printed on FR4 substrate. The rectifier part of this rectenna is also printed on FR4 substrate and consisted of impedance matching network, AC-to-DC conversion circuit and a DC filter. The design and simulation results of this rectenna have been done with the help of CST 2018 and ADS 2017 software packages. The maximum conversion efficiency obtained by this rectenna is found as 57.141% at an input power of 2 dBm and a load of 900 Ω.
This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.
With the substantial growth of mobile applications and the emergence of cloud computing concepts, therefore mobile Cloud Computing (MCC) has been introduced as a potential mobile service technology. Mobile has limited resources, battery life, network bandwidth, storage, and processor, avoid mobile limitations by sending heavy computation to the cloud to get better performance in a short time, the operation of sending data, and get the result of computation call offloading. In this paper, a survey about offloading types is discussed that takes care of many issues such as offloading algorithms, platforms, metrics (that are used with this algorithm and its equations), mobile cloud architecture, and the advantages of using the mobile cloud. The trade-off between local execution of tasks on end-devices and remote execution on the cloud server for minimizing delay time and energy saving. In the form of a multi-objective optimization problem with a focus on reducing overall system power consumption and task execution latency, meta-heuristic algorithms are required to solve this problem which is considered as NP-hardness when the number of tasks is high. To get minimum cost (time and energy) apply partial offloading on specific jobs containing a number of tasks represented in sequences of zeros and ones for example (100111010), when each bit represents a task. The zeros mean the task will be executed in the cloud and the ones mean the task will be executed locally. The decision of processing tasks locally or remotely is important to balance resource utilization. The calculation of task completion time and energy consumption for each task determines which task from the whole job will be executed remotely (been offloaded) and which task will be executed locally. Calculate the total cost (time and energy) for the whole job and determine the minimum total cost. An optimization method based on metaheuristic methods is required to find the best solution. The genetic algorithm is suggested as a metaheuristic Algorithm for future work.
The power theft is one of the main problems facing the electric energy sector in Iraq, where a large amount of electrical energy is lost due to theft. It is required to design a system capable of detecting and locating energy theft without any human interaction. This paper presents an effective solution with low cost to solve power theft issue in distribution lines. Master meter is designed to measures the power of all meters of the homes connected to it. All the measured values are transmitted to the server via GPRS. The values of power for all energy meters within the grid are also transmitted. The comparison between the power of the master meter and all the other meters are transmitted to the server. If there is a difference between the energy meters, then a theft is happened and the server will send a signal via GSM to the overrun meter to switch off the power supply. Raspberry pi is used as a server and equipped and programmed to detect the power theft.
Brain tumors are collections of abnormal tissues within the brain. The regular function of the brain may be affected as it grows within the region of the skull. Brain tumors are critical for improving treatment options and patient survival rates to prevent and treat them. The diagnosis of cancer utilizing manual approaches for numerous magnetic resonance imaging (MRI) images is the most complex and time-consuming task. Brain tumor segmentation must be carried out automatically. A proposed strategy for brain tumor segmentation is developed in this paper. For this purpose, images are segmented based on region-based and edge-based. Brain tumor segmentation 2020 (BraTS2020) dataset is utilized in this study. A comparative analysis of the segmentation of images using the edge-based and region-based approach with U-Net with ResNet50 encoder, architecture is performed. The edge-based segmentation model performed better in all performance metrics compared to the region-based segmentation model and the edge-based model achieved the dice loss score of 0. 008768, IoU score of 0. 7542, f1 score of 0. 9870, the accuracy of 0. 9935, the precision of 0. 9852, recall of 0. 9888, and specificity of 0. 9951.
The drastic increase of residential load consumption in recent years result in over loading feeder lines and transformers for the Iraqi northern area distribution system especially in the city of Mosul. Solution for this problem require up to date research consumers load study to find the proper solution to stop excess overload in the transformers and the feeders. This paper include the regional survey for samples of consumers representing typical types of different standard of living and energy consumption by distributing questioners contain list of information such as load type in daily use. Also current readings are recorded for the individual consumer for the months of the year 2006. In addition to those readings, energy consumption is recorded once every two months. The registered readings are used in conjunction with the list of questionnaires to find a sample (for different loads) that coincide with the list of questionnaires for current and energy readings. Resulting in the feasibility of using the sample to know the peak value of current for any consumer even if he is not included in the list of questionnaires and for any new consumer, since it become possible to decide the size of the transformers and feeder lines, to overcome the problem of overloading in any part of the distribution system. The Artificial Neural Network (ANN) is used in this paper to find the above mentioned sample.