Cover
Vol. 16 No. Special Issue (2020)

Published: June 30, 2020

Pages: 37-43

Conference Article

WSNs and IoT Their Challenges and applications for Healthcare and Agriculture: A Survey

Abstract

Nowadays, the Wireless Sensor Network (WSN) has materialized its working areas, including environmental engineering, agriculture sector, industrial, business applications, military, intelligent buildings, etc. Sensor networks emerge as an attractive technology with great promise for the future. Indeed, issues remain to be resolved in the areas of coverage and deployment, scalability, service quality, size, energy consumption and security. The purpose of this paper is to present the integration of WSNs for IoT networks with the intention of exchanging information, applying security and configuration. These aspects are the challenges of network construction in which authentication, confidentiality, availability, integrity, network development. This review sheds some light on the potential integration challenges imposed by the integration of WSNs for IoT, which are reflected in the difference in traffic features.

References

  1. I. F. Akyildiz and M. Can Vuran, Wireless Sensor Networks. 2010.
  2. D. Chen, Z. Liu, L. Wang, M. Dou, J. Chen, and H. Li, “Natural disaster monitoring with wireless sensor networks: A case study of data-intensive applications upon low-cost scalable systems,” Mob. Networks Appl., 2013, doi: 10.1007/s11036-013-0456-9.
  3. E. Asimakopoulou and N. Bessis, “Buildings and crowds: Forming smart cities for more effective disaster management,” in Proceedings - 2011 5th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2011, 2011, doi: 10.1109/IMIS.2011.129.
  4. M. Jacobsson and C. Orfanidis, “Using Software-defined Networking Principles for Wireless Sensor Networks,” Proc. 11th Swedish Natl. Comput. Netw. Work. (SNCNW 2015) Karlstad, May 28-29, 2015, 2015.
  5. Cisco Systems, “Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are,” Www.Cisco.Com, 2016.
  6. M. Rebai, M. Le Berre, H. Snoussi, F. Hnaien, and L. Khoukhi, “Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks,” Comput. Oper. Res., 2015, doi: 10.1016/j.cor.2014.11.002.
  7. G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks, 2009, doi: 10.1016/j.adhoc.2008.06.003.
  8. E. Lattanzi, E. Regini, A. Acquaviva, and A. Bogliolo, “Energetic sustainability of routing algorithms for energy-harvesting wireless sensor networks,” Comput. Commun., 2007, doi: 10.1016/j.comcom.2007.05.035.
  9. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Comput. Networks, 2002, doi: 10.1016/S1389-1286(01)00302-4.
  10. M. Azharuddin, P. Kuila, P. K. Jana, and S. Thampi, “Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks,” in Computers and Electrical Engineering, 2015, doi: 10.1016/j.compeleceng.2014.07.019.
  11. P. Kuila and P. K. Jana, “Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach,” Eng. Appl. Artif. Intell., 2014, doi: 10.1016/j.engappai.2014.04.009.
  12. T. Gao, D. Greenspan, M. Welsh, R. R. Juang, and A. Alm, “Vital signs monitoring and patient tracking over a wireless network,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2005.
  13. Z. Li and G. Zhang, “A physical activities healthcare system based on wireless sensing technology,” in Proceedings - 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2007, 2007, doi: 10.1109/RTCSA.2007.10.
  14. R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care system based on knitted integrated sensors,” IEEE Trans. Inf. Technol. Biomed., 2005, doi: 10.1109/TITB.2005.854512.
  15. L. M. Borges, N. Barroca, F. J. Velez, and A. S. Lebres, “Smart-clothing wireless flex sensor belt network for foetal health monitoring,” in 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare - Pervasive Health 2009, PCTHealth 2009, 2009, doi: 10.4108/ICST.PERVASIVEHEALTH2009.6028.
  16. M. Gietzelt, K. H. Wolf, M. Marschollek, and R. Haux, “Automatic self-calibration of body worn triaxial- accelerometers for application in healthcare,” in Proceedings of the 2nd International Conference on Pervasive Computing Technologies for Healthcare 2008, PervasiveHealth, 2008, doi: 10.1109/PCTHEALTH.2008.4571063.
  17. C. Gherbi, Z. Aliouat, and M. Benmohammed, “A survey on clustering routing protocols in wireless sensor networks,” Sensor Review. 2017, doi: 10.1108/SR-06- 2016-0104.
  18. M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, and R. Puers, “Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters,” Sensors Actuators, A Phys., 2008, doi: 10.1016/j.sna.2007.11.005.
  19. V. Leonov, P. Fiorini, S. Sedky, T. Torfs, and C. Van Hoof, “Thermoelectric MEMS generators as a power supply for a body area network,” in Digest of Technical Papers - International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS ’05, 2005, doi: 10.1109/SENSOR.2005.1496414.
  20. P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards,” Computer Communications. 2007, doi: 10.1016/j.comcom.2006.12.020.
  21. A. Jain, K. Kant, and M. R. Tripathy, “Security solutions for wireless sensor networks,” in Proceedings - 2012 2nd International Conference on Advanced Computing and Communication Technologies, ACCT 2012, 2012, doi: 10.1109/ACCT.2012.102.
  22. P. Kuila, S. K. Gupta, and P. K. Jana, “A novel evolutionary approach for load balanced clustering problem for wireless sensor networks,” Swarm Evol. Comput., 2013, doi: 10.1016/j.swevo.2013.04.002.
  23. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the Hawaii International Conference on System Sciences, 2000, doi: 10.1109/hicss.2000.926982.
  24. V. Kumar, S. Jain, and S. Tiwari, “Energy Efficient Clustering Algorithms in Wireless Sensor Networks: A Survey.,” Int. J. Comput. Sci. Issues, 2011.
  25. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural Mohammed Saleh | 43 elements, and future directions,” Futur. Gener. Comput. Syst., 2013, doi: 10.1016/j.future.2013.01.010.
  26. O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J., 2018, doi: 10.1109/JIOT.2018.2844296.
  27. D. Liu, X. Cao, C. Huang, and L. Ji, “Intelligent agriculture greenhouse environment monitoring system based on IOT technology,” in Proceedings - 2015 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2015, 2016, doi: 10.1109/ICITBS.2015.126.
  28. Y. E. M. Hamouda and B. H. Y. Elhabil, “Precision Agriculture for Greenhouses Using a Wireless Sensor Network,” in Proceedings - 2017 Palestinian International Conference on Information and Communication Technology, PICICT 2017, 2017, doi: 10.1109/PICICT.2017.20.
  29. R. Pahuja, H. K. Verma, and M. Uddin, “A wireless sensor network for greenhouse climate control,” IEEE Pervasive Comput., 2013, doi: 10.1109/MPRV.2013.26.
  30. W. Measure and R. Humidity, “WE600-700-01 0213 Humidity & Temperature Sensors,” pp. 1–2.
  31. H. Sensor, “Humidity Sensor CHS series Overview of the CHS series,” no. June, 2016.
  32. Aosong, CM2301 temperature and humidity sensor. 2018.
  33. A. Ali, Y. Ming, S. Chakraborty, and S. Iram, “A comprehensive survey on real-time applications of WSN,” Future Internet. 2017, doi: 10.3390/fi9040077.
  34. N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food industry - Recent development and future perspective,” Computers and Electronics in Agriculture. 2006, doi: 10.1016/j.compag.2005.09.003.
  35. W. P. Iot, “the Iof2020 Use Case Architectures and Overview of the Related Iot Systems,” no. 731884, pp. 1– 221, 2020.
  36. K. F. Meteosense and M. Unit, “MeteoSense 2.0 main unit,” pp. 1–3.
  37. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” Journal of NeuroEngineering and Rehabilitation. 2012, doi: 10.1186/1743-0003-9-21.
  38. J. Sun, Y. Fang, and X. Zhu, “Privacy and emergency response in e-healthcare leveraging wireless body sensor networks,” IEEE Wirel. Commun., 2010, doi: 10.1109/MWC.2010.5416352.
  39. F. Firouzi et al., “Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics,” Future Generation Computer Systems. 2018, doi: 10.1016/j.future.2017.09.016.
  40. Sensors in Medicine and Health Care. 2004.
  41. A. D. Wood et al., “Context-aware wireless sensor networks for assisted living and residential monitoring,” IEEE Netw., 2008, doi: 10.1109/MNET.2008.4579768.
  42. A. Minaie, A. Sanati-Mehrizy, P. Sanati-Mehrizy, and R. Sanati-Mehrizy, “Application ofwireless sensor networks in health care system,” in ASEE Annual Conference and Exposition, Conference Proceedings, 2013.
  43. T. R. Hansen, J. M. Eklund, J. Sprinkle, R. Bajcsy, and S. Sastry, “Using smart sensors and a camera phone to detect and verify the fall of elderly persons,” Eur. Med. Biol. Eng. Conf., 2005, doi: 10.1.1.135.5331.
  44. H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A survey,” Comput. Networks, 2010, doi: 10.1016/j.comnet.2010.05.003.
  45. P. Iso-Ketola, T. Karinsalo, and J. Vanhala, “HipGuard: A wearable measurement system for patients recovering from a hip operation,” in Proceedings of the 2nd International Conference on Pervasive Computing Technologies for Healthcare 2008, PervasiveHealth, 2008, doi: 10.1109/PCTHEALTH.2008.4571068.
  46. D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: An ad hoc sensor network infrastructure for emergency medical care,” … Implant. Body Sens. …, 2004.
  47. J. G. Ko et al., “MEDiSN: Medical emergency detection in sensor networks,” in SenSys’08 - Proceedings of the 6th ACM Conference on Embedded Networked Sensor Systems, 2008, doi: 10.1145/1460412.1460452.
  48. B. R. Chen, K. K. Muniswamy-Reddy, and M. Welsh, “Ad-hoc multicast routing on resource-limited sensor nodes,” in REALMAN 2006 - Proceedings of Second International Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, 2006, doi: 10.1145/1132983.1132998.
  49. J. W. Judy, “Microelectromechanical systems (MEMS): Fabrication, design and applications,” Smart Mater. Struct., 2001, doi: 10.1088/0964-1726/10/6/301.
  50. M. Staples, K. Daniel, M. J. Cima, and R. Langer, “Application of micro- and nano-electromechanical devices to drug delivery,” Pharmaceutical Research. 2006, doi: 10.1007/s11095-006-9906-4.
  51. C. H. Lu and L. C. Fu, “Robust location-aware activity recognition using wireless sensor network in an attentive home,” IEEE Trans. Autom. Sci. Eng., 2009, doi: 10.1109/TASE.2009.2021981.
  52. M. Philipose, S. Consolvo, and I. Smith, “Fast, Detailed Inference of Diverse Daily Human Activities,” 17th Annu. Symp. User Interface Softw. Technol., 2004.
  53. F. Michahelles and B. Schiele, “Sensing and monitoring professional skiers,” IEEE Pervasive Computing. 2005, doi: 10.1109/MPRV.2005.66.