Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for wireless

Article
Wireless Sensor Network for Medical Applications

Hanady S.Ahmed, Abduladhem Abdulkareem Ali

Pages: 49-59

PDF Full Text
Abstract

This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.

Article
Design, Simulation, and Performance Evaluation of Reactive and Proactive Ad-Hoc Routing Protocols

Salah Abdulghani Alabady, Abdulhameed Nabeel Hameed

Pages: 1-15

PDF Full Text
Abstract

The primary goal of this study is to investigate and evaluate the performance of wireless Ad-Hoc routing protocols using the OPNET simulation tool, as well as to recommend the most effective routing strategies for the wireless mesh environment. Investigations have been testified to analyze the performance of the reactive and proactive Ad-Hoc routing protocols in different scenarios. Application and wireless metrics were configured that were used to test and evaluate the performance of routing protocols. The application metric includes web browsing metrics such as HTTP page response time, voice and video metrics such as end-to-end delay, and delay variation. The wireless network metrics include wireless media access delay, data dropped, wireless load, wireless retransmission attempts, and Packet Delivery Ratio. The simulations results show that the AODV overcome DSR and OLSR in terms of PDR (76%), wireless load (22.692 Mbps), voice delay variation (102.685 ms), HTTP page response time (15.317 sec), voice and video packet end-to-end delay (206.527 and 25.294 ms), wireless media access delay (90.150 ms), data dropped (10.003 Mbps), wireless load (22.692 Mbps), and wireless retransmission attempts (0.392 packets).

Article
Fuzzy-Neural Petri Net Distributed Control System Using Hybrid Wireless Sensor Network and CAN Fieldbus

Ali A. Abed, Abduladhem A. Ali, Nauman Aslam Computer Science & Digital Techniques, Northumbria Univ. nauman.aslam@northumbria.ac.uk, Ali F. Marhoon

Pages: 54-70

PDF Full Text
Abstract

The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.

Article
Design and Implementation of Wireless 4-20 mA Current Simulator

Ali F. Halihal Nassiriyah

Pages: 155-163

PDF Full Text
Abstract

This paper presents new device to simulate and inject a 4-20 mA current signal to PLC and control on this signal wirelessly. The proposed simulator device has been designed and implemented by a PIC 18f4520 microcontroller and an Ethernet click. This device is connected to Wireless Local Area Network (WLAN) via Wi-Fi router using TCP/IP protocol. The simulator has two channels for 4-20 mA current output signals with two channels for digital output signals, controlled by a laptop or a smart mobile. The purpose of this work is to demonstrate the usefulness of the Wi-Fi wireless technology for remote controlling on the 4-20 mA output current signal and the digital output signal in the designed simulator device. The experiments indicate that the proposed wireless simulator outputs the 4- 20 mA current with high accuracy and very fast response. The experiments also indicate that the proposed wireless simulator is easy, comfortable and convenient practically to use in the test operations of protections, interlocks and integrity of analog input channels for PLC compared to the wired simulator.

Article
Saturation Throughput and Delay Performance Evaluation of the IEEE 802.11g/n for a Wireless Lossy Channel

Salah A. Alabady

Pages: 51-64

PDF Full Text
Abstract

Non-ideal channel conditions degrade the performance of wireless networks due to the occurrence of frame errors. Most of the well-known works compute the saturation throughput and packet delay for the IEEE 802.11 Distributed Coordination Function (DCF) protocol with the assumption that transmission is carried out via an ideal channel (i.e., no channel bit errors or hidden stations), and/or the errors exist only in data packets. Besides, there are no considerations for transmission errors in the control frames (i.e., Request to Send (RTS), Clear to Send (CTS), and Acknowledgement (ACK)). Considering the transmission errors in the control frames adds complexity to the existing analysis for the wireless networks. In this paper, an analytical model to evaluate the Medium Access Control (MAC) layer saturation throughput and packet delay of the IEEE 802.11g and IEEE 802.11n protocols in the presence of both collisions and transmission errors in a non-ideal wireless channel is provided. The derived analytical expressions reveal that the saturation throughput and packet delay are affected by the network size (n), packet size, minimum backoff window size (W min ), maximum backoff stage (m), and bit error rate (BER). These results are important for protocol optimization and network planning in wireless networks .

Article
Enhancing Packet Reliability in Wireless Multimedia Sensor Networks using a Proposed Distributed Dynamic Cooperative Protocol (DDCP) Routing Algorithm

Hanadi Al-Jabry, Hamid Ali Abed Al-Asadi

Pages: 158-168

PDF Full Text
Abstract

Wireless Multimedia Sensor Networks (WMSNs) are being extensively utilized in critical applications such as envi- ronmental monitoring, surveillance, and healthcare, where the reliable transmission of packets is indispensable for seamless network operation. To address this requirement, this work presents a pioneering Distributed Dynamic Coop- eration Protocol (DDCP) routing algorithm. The DDCP algorithm aims to enhance packet reliability in WMSNs by prioritizing reliable packet delivery, improving packet delivery rates, minimizing end-to-end delay, and optimizing energy consumption. To evaluate its performance, the proposed algorithm is compared against traditional routing protocols like Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR), as well as proactive routing protocols such as Optimized Link State Routing (OLSR). By dynamically adjusting the transmission range and selecting optimal paths through cooperative interactions with neighboring nodes, the DDCP algorithm offers effective solutions. Extensive simulations and experiments conducted on a wireless multimedia sensor node testbed demonstrate the superior performance of the DDCP routing algorithm compared to AODV, DSR, and OLSR, in terms of packet delivery rate, end-to-end delay, and energy efficiency. The comprehensive evaluation of the DDCP algorithm against multiple routing protocols provides valuable insights into its effectiveness and efficiency in improving packet reliability within WMSNs. Furthermore, the scalability and applicability of the proposed DDCP algorithm for large-scale wireless multimedia sensor networks are confirmed. In summary, the DDCP algorithm exhibits significant potential to enhance the performance of WMSNs, making it a suitable choice for a wide range of applications that demand robust and reliable data transmission.

Article
Design and Implementation of Smart Electrical Power Meter System

Mofeed Turky Rashid

Pages: 1-14

PDF Full Text
Abstract

In recent years, increased importance of Smart Grid, which includes monitoring and control the consumption of customers of electric power. In this paper, Wireless Smart Electrical Power Meter has been designed and implemented which ZigBee wireless sensor network (WSN) will be used for wireless electrical power meter communication supported by PIC microcontroller which used for power unit measurements. PIC microcontroller will be used for evaluating all electric power parameters at costumer side like V rms , I rms , KWh, and PF, and then all these parameters will be send to base station through wireless network in order to be calibrated and monitored.

Article
On the Performance of Wireless-Powered NOMA Communication Networks

Noor K. Breesam, Walid A. Al-Hussaibi, Falah H. Ali

Pages: 160-169

PDF Full Text
Abstract

In different modern and future wireless communication networks, a large number of low-power user equipment (UE) devices like Internet of Things, sensor terminals, and smart modules have to be supported over constrained power and bandwidth resources. Therefore, wireless-powered communication (WPC) is considered a promising technology for varied applications in which the energy harvesting (EH) from radio frequency radiations is exploited for data transmission. This requires efficient resource allocation schemes to optimize the performance of WPC and prolong the network lifetime. In this paper, harvest-then-transmit-based WP non-orthogonal multiple access (WP-NOMA) system is designed with time-split (TS) and power control (PC) allocation strategies. To evaluate the network performance, the sum rate and UEs’ rates expressions are derived considering power-domain NOMA with successive interference cancellation detection. For comparison purposes, the rate performance of the conventional WP orthogonal multiple access (WP-OMA) is derived also considering orthogonal frequency-division multiple access and time-division multiple access schemes. Intensive investigations are conducted to obtain the best TS and PC resource parameters that enable maximum EH for higher data transmission rates compared with the reference WP-OMA techniques. The achieved outcomes demonstrate the effectiveness of designed resource allocation approaches in terms of the realized sum rate, UE’s rate, rate region, and fairness without distressing the restricted power of far UEs.

Article
Performance Evaluation of DHT Based Optical OFDM for IM/DD Transmission Over Diffused Multipath Optical Wireless Channel

Hussein A. Leftah,

Pages: 72-75

PDF Full Text
Abstract

Optical OFDM based on discrete Hartley transform (DHT-O-OFDM) has been proposed for large-size data mapping intensity modulation direct detection (IM/DD) scheme as an alter- native to the conventional optical OFDM. This paper presents a performance analysis and evaluation of IM/DD optical DC-biased DHT-O-OFDM over diffused multipath optical wireless channels. Zero-padding guard interval along with minimum mean-square error (MMSE) equalizer are used in electrical domain after the direct detection to remove the intersymbol interference (ISI) and eliminate the deleterious effects of the multipath channels. Simulation results show that the ZP-MMSE can effectively reduce the effects of multipath channels. The results also show that the effects of optical wireless multipath channel become more serious as the data signaling order increases.

Article
WSNs and IoT Their Challenges and applications for Healthcare and Agriculture: A Survey

Mohammed Mehdi Saleh

Pages: 37-43

PDF Full Text
Abstract

Nowadays, the Wireless Sensor Network (WSN) has materialized its working areas, including environmental engineering, agriculture sector, industrial, business applications, military, intelligent buildings, etc. Sensor networks emerge as an attractive technology with great promise for the future. Indeed, issues remain to be resolved in the areas of coverage and deployment, scalability, service quality, size, energy consumption and security. The purpose of this paper is to present the integration of WSNs for IoT networks with the intention of exchanging information, applying security and configuration. These aspects are the challenges of network construction in which authentication, confidentiality, availability, integrity, network development. This review sheds some light on the potential integration challenges imposed by the integration of WSNs for IoT, which are reflected in the difference in traffic features.

Article
Simulation & Performance Study of Wireless Sensor Network (WSN) Using MATLAB

Qutaiba Ibrahem Ali, Akram Abdulmaowjod, Hussein Mahmood Mohammed

Pages: 112-119

PDF Full Text
Abstract

A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.

Article
Securing Wireless Sensor Network (WSN) Using Embedded Intrusion Detection Systems

Qutaiba I. Ali* Sahar Lazim Enaam Fathi

Pages: 54-64

PDF Full Text
Abstract

This paper focuses on designing distributed wireless sensor network gateways armed with Intrusion Detection System (IDS). The main contribution of this work is the attempt to insert IDS functionality into the gateway node (UBICOM IP2022 network processor chip) itself. This was achieved by building a light weight signature based IDS based on the famous open source SNORT IDS. Regarding gateway nodes, as they have limited processing and energy constrains, the addition of further tasks (the IDS program) may affects seriously on its performance, so that, the current design takes these constrains into consideration as a priority and use a special protocol to achieve this goal. In order to optimize the performance of the gateway nodes, some of the preprocessing tasks were offloaded from the gateway nodes to a suggested classification and processing server and a new searching algorithm was suggested. Different measures were taken to validate the design procedure and a detailed simulation model was built to discover the behavior of the system in different environments.

Article
New Energy Efficient Routing Protocol in Wireless Sensor Networks Using Firefly Algorithm

Safaa Khudair Leabi

Pages: 1-7

PDF Full Text
Abstract

Energy constraint has become the major challenge for designing wireless sensor networks. Network lifetime is considered as the most substantial metric in these networks. Routing technique is one of the best choices for maintaining network lifetime. This paper demonstrates implementation of new methodology of routing in WSN using firefly swarm intelligence. Energy consumption is the dominant issue in wireless sensor networks routing. For network cutoff avoidance while maximize net lifetime energy exhaustion must be balanced. Balancing energy consumption is the key feature for rising nets lifetime of WSNs. This routing technique involves determination of optimal route from node toward sink to make energy exhaustion balance in network and in the same time maximize network throughput and lifetime. The proposed technique show that it is better than other some routing techniques like Dijkstra routing, Fuzzy routing, and ant colony (ACO) routing technique. Results demonstrate that the proposed routing technique has beat the three routing techniques in throughput and extend net lifetime.

Article
Efficient Optical OFDM System Resilience to Indoor Wireless Multipath Channels

Hussein A. Leftah

Pages: 78-83

PDF Full Text
Abstract

This article presents a developed intensity modulation/direct detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM). More precisely, the presented C-O-OFDM is based on the C-transform as a unitary orthogonal transform instead of the state-of-the-art discrete Fourier transform (DFT). Due to the properties of the real C-transform, Hermitian symmetry (HS) is not required to produce real OFDM samples. Therefore, the proposed scheme supports twice the input symbols compared to conventional DFT-based OFDM system. Real data mapping and DC bias technology is considered to evaluate the performance of the presented scheme over optical wireless multipath. The simulation results shows that the proposed C-O-OFDM is more resilience to multipath phenomena than the competitive DFT-O-OFDM and DHT-O-OFDM schemes for similar bit rate. The proposed scheme achieves about 22 dB signal-to-noise ratio (SNR) gain in comparison with the DFT-O-OFDM and about 2.5dB SNR gain in comparison with the DHT-O-OFDM scheme.

Article
Encrypted Vehicular Communication Using Wireless Controller Area Network

Mohammed Al-Qaraghuli, Saadaldeen Rashid Ahmed Ahmed, Muhammad Ilyas

Pages: 17-24

PDF Full Text
Abstract

In this paper, we focus on ensuring encrypted vehicular communication using wireless controller area network performance at high node densities, by means of Dedicated Short-Range Communication (DSRC) algorithms. We analyses the effect of the vehicular communication parameters, message-rate, data-rate, transmission power and carrier sensing threshold, on the application performance. After a state-of-the-art analysis, we propose a data-rate DSRC algorithm. Simulation studies show that DSRC performs better than other decentralized vehicular communication algorithms for a wide range of application requirements and densities. Vehicular communication plays one of the most important roles for future autonomous vehicle. We have systematically investigated the impact of vehicular communication using the MATLAB application platform and achieved an accuracy of 93.74% after encrypting all the communications between the vehicles and securing them by applying the encryption on V2V communication in comparison with the existing system of Sensor Networks which stands at 92.97%. The transmission time for the encryption is 165 seconds while the rate of encryption is as low as 120 Mbps for the proposed awareness range of vehicles to vehicle using DSRC algorithm in Wireless-Controller Area Network for communication. Experimental results show that our proposed method performs 3% better than the recently developed algorithms.

Article
Self-Powered Wide Area Infrastructure Based on WiMAX for Real Time Applications of Smart Grid

Firas S. Alsharbaty, Qutaiba I. Ali

Pages: 92-100

PDF Full Text
Abstract

This work presents a wireless communication network (WCN) infrastructure for the smart grid based on the technology of Worldwide Interoperability for Microwave Access (WiMAX) to address the main real-time applications of the smart grid such as Wide Area Monitoring and Control (WAMC), video surveillance, and distributed energy resources (DER) to provide low cost, flexibility, and expansion. Such wireless networks suffer from two significant impairments. On one hand, the data of real- time applications should deliver to the control center under robust conditions in terms of reliability and latency where the packet loss is increased with the increment of the number of industrial clients and transmission frequency rate under the limited capacity of WiMAX base station (BS). This research suggests wireless edge computing using WiMAX servers to address reliability and availability. On the other hand, BSs and servers consume affected energy from the power grid. Therefore, the suggested WCN is enhanced by green self-powered based on solar energy to compensate for the expected consumption of energy. The model of the system is built using an analytical approach and OPNET modeler. The results indicated that the suggested WCN based on green WiMAX BS and green edge computing can handle the latency and data reliability of the smart grid applications successfully and with a self-powered supply. For instance, WCN offered latency below 20 msec and received data reliability up to 99.99% in the case of the heaviest application in terms of data.

Article
Building an HMI and Demo Application of WSN-based Industrial Control Systems

Ali A. Abed, AbdulAdhem A. Ali, Nauman Aslam

Pages: 107-111

PDF Full Text
Abstract

In this paper we present the details of methodology pursued in implementation of an HMI and Demo Temperature Monitoring application for wireless sensor-based distributed control systems. The application of WSN for a temperature monitoring and control is composed of a number of sensor nodes (motes) with a networking capability that can be deployed for monitoring and control purposes. The temperature is measured in the real time by the sensor boards that sample and send the data to the monitoring computer through a base station or gateway. This paper proposes how such monitoring system can be setup emphasizing on the aspects of low cost, energy-efficient, easy ad-hoc installation and easy handling and maintenance. This paper focuses on the overall potential of wireless sensor nodes and networking in industrial applications. A specific case study is given for the measurement of temperature (with thermistor or thermocouple), humidity, light and the health of the WSN. The focus was not on these four types of measurements and analysis but rather on the design of a communication protocol and building of an HMI software for monitoring. So, a set of system design requirements are developed that covered the use of the wireless platforms, the design of sensor network, the capabilities for remote data access and management, the connection between the WSN and an HMI software designed with MATLAB.

Article
Network Monitoring Measurements for Quality of Service: A Review

Jawad Alkenani, Khulood Ahmed Nassar

Pages: 33-42

PDF Full Text
Abstract

One crucial challenge confronting operators worldwide is how to ensure that everything runs smoothly as well as how to monitor the network. The monitoring system should be accurate, easy to use, and quick enough to reflect network performance in a timely way. Passive network monitoring is an excellent tool for this. It could be used to look for issues with a single network device or a large-scale issue affecting the whole LAN or core network. However, passive network monitoring is not limited to issue resolution; it could also be used to generate network statistics and measure network performance. As shown in this review, it is a very strong tool, as seen by the sheer volume of data published on Google Scholar. The main objective of this review is to analyze and comprehend monitoring measurements for quality of service to serve as a resource for future research and application. Essential terms and concepts of network monitoring and their quality of service are presented. Network monitoring measurements (which can be passive, active, or hybrid) and their wireless network monitoring tools (which can be public domain or commercial tools) are also covered in terms of relevance, advantages, and disadvantages. Finally, the review is summarized.

Article
On the Actuation Technologies of Biomedical Microrobot: A Summarized Review

Anwar Hamza Bresam, Haider Al-Mumen

Pages: 22-32

PDF Full Text
Abstract

In recent years, wireless microrobots have gotten more attention due to their huge potential in the biomedical field, especially drug delivery. Microrobots have several benefits, including small size, low weight, sensitivity, and flexibility. These characteristics have led to microscale improvements in control systems and power delivery with the development of submillimeter-sized robots. Wireless control of individual mobile microrobots has been achieved using a variety of propulsion systems, and improving the actuation and navigation of microrobots will have a significant impact. On the other hand, actuation tools must be integrated and compatible with the human body to drive these untethered microrobots along predefined paths inside biological environments. This study investigated key microrobot components, including medical applications, actuation systems, control systems, and design schemes. The efficiency of a microrobot is impacted by many factors, including the material, structure, and environment of the microrobot. Furthermore, integrating a hybrid actuation system and multimodal imaging can increase the microrobot’s navigation effect, imaging algorithms, and working environment. In addition, taking into account the human body’s moving distance, autonomous actuating technology could be used to deliver microrobots precisely and quickly to a specific position using a combination of quick approaches.

Article
Wirelessly Controlled Irrigation System

Zain-Aldeen S. A.Rhman, Ramzy S. Ali, Basil H. Jasim

Pages: 89-99

PDF Full Text
Abstract

In the city of Basrah, there is an urgent need to use the water for irrigation process more efficiently for many reasons: one of them, the high temperature in long summer season and the other is the lack of sources fresh water sources. In this work, a smart irrigation system based wireless sensor networks (WSNs) is implemented. This system consists of the main unit that represented by an Arduino Uno board which include an ATmega328 microcontroller, different sensors as moisture sensors, temperature sensors, humidity sensors, XBee modules and solenoid valve. Zigbee technology is used in this project for implementing wireless technology. This system has two modes one manual mode, the other is a smart mode. The set points must be changed manually according to the specified season to satisfy the given conditions for the property irrigation, and the smart operation of the system will be according to these set points.

Article
Region-Based Fractional Wavelet Transform Using Post Processing Artifact Reduction

Jassim M. Abdul-Jabbar, Alyaa Q. Ahmed Taqi

Pages: 45-53

PDF Full Text
Abstract

Wavelet-based algorithms are increasingly used in the source coding of remote sensing, satellite and other geospatial imagery. At the same time, wavelet-based coding applications are also increased in robust communication and network transmission of images. Although wireless multimedia sensors are widely used to deliver multimedia content due to the availability of inexpensive CMOS cameras, their computational and memory resources are still typically very limited. It is known that allowing a low-cost camera sensor node with limited RAM size to perform a multi-level wavelet transform, will in return limit the size of the acquired image. Recently, fractional wavelet filter technique became an interesting solution to reduce communication energy and wireless bandwidth, for resource-constrained devices (e.g. digital cameras). The reduction in the required memory in these fractional wavelet transforms is achieved at the expense of the image quality. In this paper, an adaptive fractional artifacts reduction approach is proposed for efficient filtering operations according to the desired compromise between the effectiveness of artifact reduction and algorithm simplicity using some local image features to reduce boundaries artifacts caused by fractional wavelet. Applying such technique on different types of images with different sizes using CDF 9/7 wavelet filters results in a good performance.

Article
Mosul University WLAN Security: Evaluation, Analysis and Improvement

Omar Ahmed Hachum

Pages: 138-143

PDF Full Text
Abstract

In this paper, Mosul University Wireless Local Area Network (MUWLAN) security will be evaluated. The evaluation was made to test the confidentiality, integrity and availability of the MUWLAN. Addressing these issues will help in ensuring tighter security. After the evaluation, serious security pitfalls were found that can allow any attacker to have access to the MUWLAN and uses their internet service. Based on the obtained results, suggestions for improvement were made to tighten the security of Mosul University wireless local area network. Keyword : - WLAN security, WEP encryption, PTW attack, Wireshark, MITM attack, SSLStrip attack.

Article
Energy-Efficiency of Dual-Switched Branch Diversity Receiver in Wireless Sensor Networks

Ghaida A. AL-Suhail

Pages: 130-137

PDF Full Text
Abstract

In this paper, we develop an analytical energy efficiency model using dual switched branch diversity receiver in wireless sensor networks in fading environments. To adapt energy efficiency of sensor node to channel variations, the optimal packet length at the data link layer is considered. Within this model, the energy efficiency can be effectively improved for switch-and-stay combiner (SSC) receiver with optimal switching threshold. Moreover, to improve energy efficiency, we use error control of Bose-Chaudhuri-Hochquengh (BCH) coding for SSC-BPSK receiver node compared to one of non-diversity NCFSK receiver of sensor node. The results show that the BCH code for channel coding can improve the energy efficiency significantly for long link distance and various values of high energy consumptions over Rayleigh fading channel.

Article
Strategies for Enhancing the Performance of (RPL) Protocol

Rana H. Hussain

Pages: 198-203

PDF Full Text
Abstract

Wireless sensor networks have many limitations such as power, bandwidth, and memory, which make the routing process very complicated. In this research, a wireless sensor network containing three moving sink nodes is studied according to four network scenarios. These scenarios differ in the number of sensor nodes in the network. The RPL (Routing Protocol for low power and lossy network) protocol was chosen as the actual routing protocol for the network based on some routing standards by using the Wsnet emulator. This research aims to increase the life of the network by varying the number of nodes forming it. By using different primitive energy of these nodes, this gives the network to continue working for the longest possible period with low and fair energy consumption between the nodes. In this work, the protocol was modified to make the sink node move to a specific node according to the node’s weight, which depends on the number of neighbors of this node, the number of hops from this node to the sink node, the remaining energy in this node, and the number of packets generated in this node. The simulation process of the RPL protocol showed good results and lower energy consumption compared to previous researches.

Article
A Performance Study of Wireless Broadband Access (WiMAX)

Maan A. S. Al-Adwany

Pages: 125-129

PDF Full Text
Abstract

WiMAX (worldwide interoperability for microwave access) is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various channel impairments and for variety of modulation schemes. From the simulation results, we found that WiMAX system works well in both AWGN and multipath fading channels, but under certain constraints that are addressed in this paper.

Article
E-FLEACH: An Improved Fuzzy Based Clustering Protocol for Wireless Sensor Network

Enaam A. Al-Husain, Ghaida A. Al-Suhail

Pages: 190-197

PDF Full Text
Abstract

Clustering is one of the most energy-efficient techniques for extending the lifetime of wireless sensor networks (WSNs). In a clustered WSN, each sensor node transmits the data acquired from the sensing field to the leader node (cluster head). The cluster head (CH) is in charge of aggregating and routing the collected data to the Base station (BS) of the deployed network. Thereby, the selection of the optimum CH is still a crucial issue to reduce the consumed energy in each node and extend the network lifetime. To determine the optimal number of CHs, this paper proposes an Enhanced Fuzzy-based LEACH (E-FLEACH) protocol based on the Fuzzy Logic Controller (FLC). The FLC system relies on three inputs: the residual energy of each node, the distance of each node from the base station (sink node), as well as the node's centrality. The proposed protocol is implemented using the Castalia simulator in conjunction with OMNET++, and simulation results indicate that the proposed protocol outperforms the traditional LEACH protocol in terms of network lifetime, energy consumption, and stability.

Article
Control of Robot Directions Based on Online Hand Gestures

Mohammed A.Tawfeeq, Ayam M. Abbass

Pages: 41-50

PDF Full Text
Abstract

The evolution of wireless communication technology increases human machine interaction capabilities especially in controlling robotic systems. This paper introduces an effective wireless system in controlling the directions of a wheeled robot based on online hand gestures. The hand gesture images are captured and processed to be recognized and classified using neural network (NN). The NN is trained using extracted features to distinguish five different gestures; accordingly it produces five different signals. These signals are transmitted to control the directions of the cited robot. The main contribution of this paper is, the technique used to recognize hand gestures is required only two features, these features can be extracted in very short time using quite easy methodology, and this makes the proposed technique so suitable for online interaction. In this methodology, the preprocessed image is partitioned column-wise into two half segments; from each half one feature is extracted. This feature represents the ratio of white to black pixels of the segment histogram. The NN showed very high accuracy in recognizing all of the proposed gesture classes. The NN output signals are transmitted to the robot microcontroller wirelessly using Bluetooth. Accordingly the microcontroller guides the robot to the desired direction. The overall system showed high performance in controlling the robot movement directions.

Article
Issues and Research Fields of Medical Robotics: A Review

Sarah Sabeeh, Israa S. Al-Furati

Pages: 138-144

PDF Full Text
Abstract

The goal for collaborative robots has always driven advancements in robotic technology, especially in the manufacturing sector. However, this is not the case in service sectors, especially in the health sector. Thus, this lack of focus has now opened more room for the design and development of service robots that can be used in the health sector to help patients with ailments, cognitive problems, and disabilities. There is currently a global effort towards the development of new products and the use of robotic medical devices and computer-assisted systems. However, the major problem has been the lack of a thorough and systematic review of robotic research into disease and epidemiology, especially from a technology perspective. Also, medical robots are increasingly being used in healthcare to perform a variety of functions that improve patient care. This scoping review is aimed at discovering the types of robots used in healthcare and where they are deployed. Moreover, the current study is an overview of various forms of robotic technology and its uses the healthcare industry. The considered technologies are the products of a partnership between the healthcare sector and academia. They demonstrate the research and testing that are necessary for the service of robot development before they can be employed in practical applications and service scenarios. The discussion also focused on the upcoming research areas in robotic systems as well as some important technologies necessary for human-robot collaboration, such as wireless sensor networks, big data, and artificial intelligence.

Article
Traffic Offloading in LTE System Based Heteroge- neous Networks

Mahmood F. Mosleh

Pages: 152-160

PDF Full Text
Abstract

The continuous growing developments in the traffic of mobile data limits the data throughput and capacity of cellular networks. “Heterogeneous Networks (HetNets)” are efficient solution to realize such demands. However, in HetNets, the congestion on the overloaded cellular network can be increased when the traffic of data is pushed from a cellular network to the Wi-Fi. In practice, offloading the cellular data traffic to a Wireless Local Area Network (WLAN) depending on the signal quality is a broadly deployed method to solve such problem. The use of Device to Device (D2D) communication further enhances the traffic offloading in WLAN systems and helps to obtain better throughput, end-to-end delay and network load. However, the critical offloading potential and its impacts on the whole performance is not totally understood. In this paper, the offloading of Long Term Evolution (LTE) traffic is presented using a WLAN for voice and video applications. A comparison is performed among two WLAN mecha- nisms; Distributed coordination function (DCF) and Point Coordination Function (PCF). As well, the effect of add- ing a D2D technology to the PCF is discussed. The WLAN effectively offloaded nodes at their Signal to Interference and Noise Ratio (SINR) becomes more than a specific threshold. Results presented that the PCF mechanism outper- forms the DCF one in terms of packet loss ratio, throughput and the maximum load of the entire network. In addi- tion, the use of a D2D serviced in the PCF helps in further reduction in the network load.

Article
Soft Computing Control System of an Unmanned Airship

Wong Wei Kitt, Ali Chekima, Jamal A. Dhargam, Farrah Wong, Tamer A.Tabet

Pages: 22-27

PDF Full Text
Abstract

Soft computing control system have been applied in various applications particularly in the fields of robotics controls. The advantage of having a soft computing controls methods is that it enable more flexibility to the control system compared with conventional model based controls system. In this paper, a UAV airship is controlled using fuzzy logic for its propulsion and steering system. The airship is tested on a simulation level before test flight. The prototype airship has on board GPS and compass for telemetry and transmitted to the ground control system via a wireless link.

Article
Enhanced Bundle-based Particle Collision Algorithm for Adaptive Resource Optimization Allocation in OFDMA Systems

Haider M. AlSabbagh, Mohammed Khalid Ibrahim

Pages: 21-32

PDF Full Text
Abstract

The necessity for an efficient algorithm for resource allocation is highly urgent because of increased demand for utilizing the available spectrum of the wireless communication systems. This paper proposes an Enhanced Bundle-based Particle Collision Algorithm (EB-PCA) to get the optimal or near optimal values. It applied to the Orthogonal Frequency Division Multiple Access (OFDMA) to evaluate allocations for the power and subcarrier. The analyses take into consideration the power, subcarrier allocations constrain, channel and noise distributions, as well as the distance between user's equipment and the base station. Four main cases are simulated and analyzed under specific operation scenarios to meet the standard specifications of different advanced communication systems. The sum rate results are compared to that achieved with employing another exist algorithm, Bat Pack Algorithm (BPA). The achieved results show that the proposed EB-PAC for OFDMA system is an efficient algorithm in terms of estimating the optimal or near optimal values for both subcarrier and power allocation.

Article
Authentication Healthcare Scheme in WBAN

Abdullah Mohammed Rashid, Ali A. Yassin, Abdulla J. Y. Aldarwish, Aqeel A. Yaseen, Hamid Alasadi, Ammar Asaad, Alzahraa J. Mohammed

Pages: 118-127

PDF Full Text
Abstract

A wireless body area network (WBAN) connects separate sensors in many places of the human body, such as clothes, under the skin. WBAN can be used in many domains such as health care, sports, and control system. In this paper, a scheme focused on managing a patient’s health care is presented based on building a WBAN that consists of three components, biometric sensors, mobile applications related to the patient, and a remote server. An excellent scheme is proposed for the patient’s device, such as a mobile phone or a smartwatch, which can classify the signal coming from a biometric sensor into two types, normal and abnormal. In an abnormal signal, the device can carry out appropriate activities for the patient without requiring a doctor as a first case. The patient does not respond to the warning message in a critical case sometimes, and the personal device sends an alert to the patient’s family, including his/her location. The proposed scheme can preserve the privacy of the sensitive data of the patient in a protected way and can support several security features such as mutual authentication, key management, anonymous password, and resistance to malicious attacks. These features have been proven depending on the Automated Validation of Internet Security Protocols and Applications. Moreover, the computation and communication costs are efficient compared with other related schemes.

Article
Wireless Controlled Smart Home System

Bilal Naji Alhasnawi, Basil H.Jasim

Pages: 123-137

PDF Full Text
Abstract

in recent years popularity of smart Home has been increasing due to low price and simplicity through tablet and Smartphone connectivity. It is an automation of house or home activity. Raspberry Pi3 is a small computer with digital input output capability and it was introduced in 2016; input/output ability besides the availability of all computer features make this system very suitable to be central unit can for smart home. Smart Home may contain centralize controller which control heating, lightning, ventilation in the home, HAVC( Heating, Ventilation and air conditioning),Safety locks of gates, doors and other system to provide improve comfort, better energy efficiency and security. The aim of this Paper is to develop a smart home application using RPi3, wemose-d1 and GSM. Programming has been developed in C++ in wemose-d1 and Python environment for RPi3 operation. The MQTT (Message Queuing Telemetry Transport protocol) technologic used to connect between raspberry pi3 and nodes.

Article
Performance of Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC)

Ali K. Marzook, Hayder J. Mohammed, Hisham L. Swadi Roomi

Pages: 152-156

PDF Full Text
Abstract

Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.

Article
An Enhanced Deployment Approach of Adaptive Equalizer for Multipath Fading Channels

Haider Al-Kanan

Pages: 264-273

PDF Full Text
Abstract

Inter-symbol interference (ISI) exhibits major distortion effect often appears in digital storage and wireless communica- tion channels. The traditional decision feedback equalizer (DFE) is an efficient approach of mitigating the ISI effect using appropriate digital filter to subtract the ISI. However, the error propagation in DFE is a challenging problem that degrades the equalization due to the aliasing distorted symbols in the feedback section of the traditional DFE. The aim of the proposed approach is to minimize the error propagation and improve the modeling stability by incorporating adequate components to control the training and feedback mode of DFE. The proposed enhanced DFE architecture consists of a decision and controller components which are integrated on both the transmitter and receiver sides of communication system to auto alternate the DFE operational modes between training and feedback state based on the quality of the received signal in terms of signal-to-noise ratio SNR. The modeling architecture and performance validation of the proposed DFE are implemented in MATLAB using a raised-cosine pulse filter on the transmitter side and linear time-invariant channel model with additive gaussian noise. The equalizer capability in compensating ISI is evaluated during different operational stages including the training and DFE based on different channel distortion characteristics in terms of SNR using both 0.75 and 1.5 symbol duration in unit delay fraction of FIR filter. The simulation results of eye-diagram pattern showed significant improvement in the DFE equalizer when using a lower unit delay fraction in FIR filter for better suppressing the overlay trails of ISI. Finally, the capability of the proposed approach to mitigate the ISI is improved almost double the number of symbol errors compared to the traditional DFE.

Article
Design and Implementation of RFID Active Tags and Mutual Authentication Protocol with Ownership Transfer Stage

Issam A. Hussein, Ramzy S. Ali, Basil H. Jasim

Pages: 83-103

PDF Full Text
Abstract

Radio frequency identification (RFID) technology is being used widely in the last few years. Its applications classifies into auto identification and data capturing issues. The purpose of this paper is to design and implement RFID active tags and reader using microcontroller ATmega328 and 433 MHz RF links. The paper also includes a proposed mutual authentication protocol between RFID reader and active tags with ownership transfer stage. Our protocol is a mutual authentication protocol with tag’s identifier updating mechanism. The updating mechanism has the purpose of providing forward security which is important in any authentication protocol to prevent the attackers from tracking the past transactions of the compromised tags. The proposed protocol gives the privacy and security against all famous attacks that RFID system subjected for due to the transfer of data through unsecure wireless channel, such as replay, denial of service, tracking and cloning attacks. It also ensures ownership privacy when the ownership of the tag moves to a new owner.

Article
Autonomous Navigation of Mobile Robot Based on Flood Fill Algorithm

Ayad Mohammed Jabbar

Pages: 79-84

PDF Full Text
Abstract

The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.

Article
Privacy Issues in Vehicular Ad-hoc Networks: A Review

Zahra K. Farhood, Ali A. Abed, Sarah Al-Shareeda

Pages: 25-36

PDF Full Text
Abstract

Vehicle Ad-hoc Network (VANET) is a type of wireless network that enables communication between vehicles and Road Side Units (RSUs) to improve road safety, traffic efficiency, and service delivery. However, the widespread use of vehicular networks raises serious concerns about users’ privacy and security. Privacy in VANET refers to the protection of personal information and data exchanged between vehicles, RSUs, and other entities. Privacy issues in VANET include unauthorized access to location and speed information, driver and passenger identification, and vehicle tracking. To ensure privacy in VANET, various technologies such as pseudonymization, message authentication, and encryption are employed. When vehicles frequently change their identity to avoid tracking, message authentication ensures messages are received from trusted sources, and encryption is used to prevent unauthorized access to messages. Therefore, researchers have presented various schemes to improve and enhance the privacy efficiency of vehicle networks. This survey article provides an overview of privacy issues as well as an in-depth review of the current state-of-the-art pseudonym-changing tactics and methodologies proposed.

Article
Increasing WSN Lifetime using Clustering and Fault Tolerance Methods

Sama Hussam Sabah, Muayad Sadik Croock

Pages: 94-99

PDF Full Text
Abstract

Energy consumption problems in wireless sensor networks are an essential aspect of our days where advances have been made in the sizes of sensors and batteries, which are almost very small to be placed in the patient's body for remote monitoring. These sensors have inadequate resources, such as battery power that is difficult to replace or recharge. Therefore, researchers should be concerned with the area of saving and controlling the quantities of energy consumption by these sensors efficiently to keep it as long as possible and increase its lifetime. In this paper energy-efficient and fault-tolerance strategy is proposed by adopting the fault tolerance technique by using the self-checking process and sleep scheduling mechanism for avoiding the faults that may cause an increase in power consumption as well as energy-efficient at the whole network. this is done by improving the LEACH protocol by adding these proposed strategies to it. Simulation results show that the recommended method has higher efficiency than the LEACH protocol in power consumption also can prolong the network lifetime. In addition, it can detect and recover potential errors that consume high energy.

Article
Design of a Wide Dual-Band Coplanar Probe Feed Antenna for WLANs Applications

Nabil Eyad Abdulhussein, Abdulkareem S. Abdullah

Pages: 13-16

PDF Full Text
Abstract

This paper presents a new design to obtain wide dual-band operation from a coplanar probe feed antenna loaded with two shorted walls. The lower band of proposed antenna has a 10 dB bandwidth of 611 MHz (24.18%) around the center frequency 2527MHz, and the upper band has a bandwidth of 1255 MHz (27.88%) around the center frequency 4501MHz. The obtained bandwidths cover WLANs operations on all bands. The bandwidth of the first operating frequency covers ISM band (2400- 2483.5) MHz, which is required by IEEE 802.11b, g and Bluetooth standards, and the bandwidth of the second operating frequency covers U-NII1 (5150-5350) MHz band, which is required by IEEE 802.11a and HiperLAN2 standards, and also covers U-NII2 (5470-5725) MHz and U-NII3/ISM (5725-5825) MHz bands, which are required by IEEE 802.11a standard. A three dimensional finite-difference time-domain (3-D FDTD) method is employed to analyze the proposed structure and find its performance. The simulated results are compared with the experimental results.

Article
Smart Navigation with Static Polygons and Dynamic Robots

Israa S. Al-Furati, Osama T. Rashid

Pages: 38-46

PDF Full Text
Abstract

Due to the last increase in data and information technology, the need to use robots in many life areas is increased. There is a great diversity in this field, depending on the type of task required, as the robot enters the parcels of air, land, and water. In this paper, a robot's mission designed to move things is concentrated, relying on line-tracing technology that makes it easy to track its path safely, the RFID is distributed in its approach. When the robot reads the RFID tag, it stops until it raises the load from above, the robot continues its path toward the target. When an obstacle obstructs the robot path, the robot deviates and returns after a while to its previous approach. All this technology is implemented using a new algorithm which is programmed using the visual basic program. The robot designed to transfer the stored material is used according to a site known as an identifier that is identified by the RFID value, where the robot is programmed through a microcontroller and a unique store program that determines the current location and the desired location, then is given the task for the robot to do it as required. The robot is controlled using an ATmega controller to control other parts connected to the electronic circuit, the particular infrared sensor, and ultrasound to avoid potential obstacles within the robot's path to reach the target safely. In addition to this, the robot is made up of an RFID sensor to give unique to each desired target site. Through the console, it is possible to know the link indicated by the target. The H-bridge is also used to obtain a particular command and guide the robot as needed to move freely in all directions and a DC motor which is unique for moving wheels at the desired speed, and Bluetooth for programmable and secure wireless transmission and reception with all these parts through a unique program that also uses application inventory. The robot has proven to be a great success in performing the required task through several tests that have been practically performed.

Article
Fuzzy Transmission Power Control Scheme for Maximizing Lifetime in Wireless Sensor Networks

Safaa Khudair Leabi, Turki Younis Abdalla

Pages: 174-182

PDF Full Text
Abstract

Energy limitations have become fundamental challenge for designing WSNs. Network lifetime is the most interested and important metric in WSNs. Many works have been developed for prolonging networks lifetime, in which one of the important work is the control of transmission power. This paper proposes a new fuzzy transmission power control technique that operate together with routing protocols for prolonging WSNs lifetime. Dijkstra shortest path routing is considered as the main routing protocol in this work. This paper mainly focuses on transmission power control scheme for prolonging WSNs lifetime. A performance comparison is depicted for maximum and controlled transmission power. Simulation results show an increase in network lifetime equals to 3.4776 for the proposed fuzzy control. The performance of the proposed fuzzy control technique involves a good improvement and contribution in the field of prolonging networks lifetime by using transmission power control.

Article
Design and Analysis of a Single-Band Printed Rectenna Circuit at WiFi Frequency for Microwave Power Transmission

Ahmad A. Salih, Abdulkareem S. Abdullah

Pages: 33-39

PDF Full Text
Abstract

In this paper, a single-band printed rectenna of size (45×36) mm 2 has been designed and analyzed to work at WiFi frequency of 2.4 GHz for wireless power transmission. The antenna part of this rectenna has the shape of question mark patch along with an inverted L-shape resonator and printed on FR4 substrate. The rectifier part of this rectenna is also printed on FR4 substrate and consisted of impedance matching network, AC-to-DC conversion circuit and a DC filter. The design and simulation results of this rectenna have been done with the help of CST 2018 and ADS 2017 software packages. The maximum conversion efficiency obtained by this rectenna is found as 57.141% at an input power of 2 dBm and a load of 900 Ω.

Article
Taguchi Method Based Node Performance Analysis of Generous TIT- for-TAT Cooperation of AD-HOC Networks

Noor Kareem Jumaa, Auday A.H. Mohamad, Abbas Muhammed Allawy, Ali A. Mohammed

Pages: 33-44

PDF Full Text
Abstract

Ad-Hoc networks have an adaptive architecture, temporarily configured to provide communication between wireless devices that provide network nodes. Forwarding packets from the source node to the remote destination node may require intermediate cooperative nodes (relay nodes), which may act selfishly because they are power-constrained. The nodes should exhibit cooperation even when faced with occasional selfish or non-cooperative behaviour from other nodes. Several factors affect the behaviour of nodes; those factors are the number of packets required to redirect, power consumption per node, and power constraints per node. Power constraints per node and grade of generosity. This article is based on a dynamic collaboration strategy, specifically the Generous Tit-for-Tat (GTFT), and it aims to represent an Ad-Hoc network operating with the Generous Tit-for-Tat (GTFT) cooperation strategy, measure statistics for the data, and then analyze these statistics using the Taguchi method. The transfer speed and relay node performance both have an impact on the factors that shape the network conditions and are subject to analysis using the Taguchi Method (TM). The analyzed parameters are node throughput, the amount of relay requested packets produced by a node per number of relays requested packets taken by a node, and the amount of accepted relay requested by a node per amount of relay requested by a node. A Taguchi L9 orthogonal array was used to analyze node behaviour, and the results show that the effect parameters were number of packets, power consumption, power constraint of the node, and grade of generosity. The tested parameters influence node cooperation in the following sequence: number of packets required to redirect (N) (effects on behaviour with a percent of 6.8491), power consumption per node (C) (effects on behaviour with a percent of 0.7467), power constraints per node (P) (effects on behaviour with a percent of 0.6831), and grade of generosity (ε) (effects on behaviour with a percent of 0.4530). Taguchi experiments proved that the grade of generosity (GoG) is not the influencing factor where the highest productivity level is, while the number of packets per second required to redirect also has an impact on node behaviour.

1 - 44 of 44 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.