Cover
Vol. 20 No. 2 (2024)

Published: December 31, 2024

Pages: 22-32

Review Article

On the Actuation Technologies of Biomedical Microrobot: A Summarized Review

Abstract

In recent years, wireless microrobots have gotten more attention due to their huge potential in the biomedical field, especially drug delivery. Microrobots have several benefits, including small size, low weight, sensitivity, and flexibility. These characteristics have led to microscale improvements in control systems and power delivery with the development of submillimeter-sized robots. Wireless control of individual mobile microrobots has been achieved using a variety of propulsion systems, and improving the actuation and navigation of microrobots will have a significant impact. On the other hand, actuation tools must be integrated and compatible with the human body to drive these untethered microrobots along predefined paths inside biological environments. This study investigated key microrobot components, including medical applications, actuation systems, control systems, and design schemes. The efficiency of a microrobot is impacted by many factors, including the material, structure, and environment of the microrobot. Furthermore, integrating a hybrid actuation system and multimodal imaging can increase the microrobot’s navigation effect, imaging algorithms, and working environment. In addition, taking into account the human body’s moving distance, autonomous actuating technology could be used to deliver microrobots precisely and quickly to a specific position using a combination of quick approaches.

References

  1. V. D. Nguyen, H.-K. Min, H. Y. Kim, J. Han, Y. H. Choi, C.-S. Kim, J.-O. Park, and E. Choi, “Primary macrophage-based microrobots: an effective tumor ther- apy in vivo by dual-targeting function and near-infrared- triggered drug release,” ACS nano, vol. 15, no. 5, pp. 8492–8506, 2021.
  2. Q. Wang, L. Yang, J. Yu, P. W. Y. Chiu, Y.-P. Zheng, and L. Zhang, “Real-time magnetic navigation of a rotating colloidal microswarm under ultrasound guidance,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 12, pp. 3403–3412, 2020.
  3. X. Lu, K. Zhao, W. Liu, D. Yang, H. Shen, H. Peng, X. Guo, J. Li, and J. Wang, “A human microrobot inter- face based on acoustic manipulation,” Acs Nano, vol. 13, no. 10, pp. 11443–11452, 2019.
  4. K. Xu, S. Xu, and F. Wei, “Recent progress in mag- netic applications for micro-and nanorobots,” Beilstein Journal of Nanotechnology, vol. 12, no. 1, pp. 744–755, 2021.
  5. G. Hwang, A. Mizushima, E. Lebrasseur, K. Misumi, N. Usami, A. Higo, and Y. Mita, “Mobile microrobotic cleaner in microfluidics,” Sensors and Actuators A: Phys- ical, vol. 318, p. 1–29, 2021.
  6. H. Zhang, J. K. Jackson, and M. Chiao, “Microfabri- cated drug delivery devices: design, fabrication, and applications,” Advanced Functional Materials, vol. 27, no. 45, pp. 1–31, 2017.
  7. A. Vikram Singh and M. Sitti, “Targeted drug delivery and imaging using mobile milli/microrobots: A promis- ing future towards theranostic pharmaceutical design,” Current pharmaceutical design, vol. 22, no. 11, pp. 1418– 1428, 2016.
  8. C. K. Schmidt, M. Medina-S´anchez, R. J. Edmondson, and O. G. Schmidt, “Engineering microrobots for tar- geted cancer therapies from a medical perspective,” Na- ture Communications, vol. 11, no. 1, pp. 1–18, 2020.
  9. E. E. Hunter, E. B. Steager, A. Hsu, A. Wong-Foy, R. Pel- rine, and V. Kumar, “Nanoliter fluid handling for mi- crobiology via levitated magnetic microrobots,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 997– 1004, 2019.
  10. M. Suhail, A. Khan, M. A. Rahim, A. Naeem, M. Fa- had, S. F. Badshah, A. Jabar, and A. K. Janakiraman, “Micro and nanorobot-based drug delivery: an overview,” Journal of Drug Targeting, vol. 30, no. 4, pp. 349–358, 2022.
  11. H. Lee, D.-i. Kim, S.-h. Kwon, and S. Park, “Magnet- ically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability,” ACS applied ma- terials & interfaces, vol. 13, no. 17, pp. 19633–19647, 2021.
  12. S. Salmanipour, O. Youssefi, and E. D. Diller, “Design of multi-degrees-of-freedom microrobots driven by ho- mogeneous quasi-static magnetic fields,” IEEE Transac- tions on Robotics, vol. 37, no. 1, pp. 246–256, 2021.
  13. B. A. Darmawan, S. B. Lee, G. Go, K. T. Nguyen, H.- S. Lee, M. Nan, A. Hong, C.-S. Kim, H. Li, D. Bang, et al., “Self-folded microrobot for active drug delivery and rapid ultrasound-triggered drug release,” Sensors and Actuators B: Chemical, vol. 324, p. 128752, 2020.
  14. Y. Ji, C. Gan, Y. Dai, X. Bai, Z. Zhu, L. Song, L. Wang, H. Chen, J. Zhong, and L. Feng, “Deformable ferrofluid microrobot with omnidirectional self-adaptive mobility,” Journal of Applied Physics, vol. 131, no. 6, p. 064701, 2022.
  15. S. Floyd, C. Pawashe, and M. Sitti, “An untethered mag- netically actuated micro-robot capable of motion on ar- bitrary surfaces,” in 2008 IEEE international conference on robotics and automation, pp. 419–424, IEEE, 2008. 29 | Bresam & Al-Mumen
  16. S. Park and J.-O. Park, “Frontier research program on biomedical microrobot for intravascular therapy,” in 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, (Scotts- dale, AZ, USA), pp. 360–365, IEEE, 2008.
  17. E. A. R. Hussein, A. S. Hassooni, and H. Al-Libawy, “Detection of electrocardiogram qrs complex based on modified adaptive threshold,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 3512–3521, 2019.
  18. X.-Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B. J. Nelson, and S. Pan´e, “Recent developments in mag- netically driven micro-and nanorobots,” Applied Materi- als Today, vol. 9, pp. 37–48, 2017.
  19. D. Dong, W. S. Lam, and D. Sun, “Electromagnetic actuation of microrobots in a simulated vascular struc- ture with a position estimator based motion controller,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6255–6261, 2020.
  20. L. Wang, Z. Meng, Y. Chen, and Y. Zheng, “Engineering magnetic micro/nanorobots for versatile biomedical ap- plications,” Advanced Intelligent Systems, vol. 3, no. 7, p. 2000267, 2021.
  21. R. L. Truby and S. Li, “Integrating chemical fuels and artificial muscles for untethered microrobots,” Science Robotics, vol. 5, no. 45, pp. 1–3, 2020.
  22. J. Liu, S. Yu, B. Xu, Z. Tian, H. Zhang, K. Liu, X. Shi, Z. Zhao, C. Liu, X. Lin, et al., “Magnet- ically propelled soft microrobot navigating through constricted microchannels,” Applied Materials Today, vol. 25, p. 101237, 2021.
  23. L. Yang and L. Zhang, “Motion control in magnetic microrobotics: From individual and multiple robots to swarms,” Annual Review of Control, Robotics, and Au- tonomous Systems, vol. 4, pp. 509–534, 2021.
  24. T. Yamanaka and F. Arai, “Self-propelled swimming microrobot using electroosmotic propulsion and biofuel cell,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1787–1792, 2018.
  25. N. Ebrahimi, C. Bi, D. J. Cappelleri, G. Ciuti, A. T. Conn, D. Faivre, N. Habibi, A. Hoˇsovsk`y, V. Iacov- acci, I. S. Khalil, et al., “Magnetic actuation methods in bio/soft robotics,” Advanced Functional Materials, vol. 31, no. 11, p. 1–40, 2021.
  26. K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired magnetic swimming microrobots for biomedical appli- cations,” Nanoscale, vol. 5, no. 4, pp. 1259–1272, 2013.
  27. H. Choi, S. Jeong, G. Go, C. Lee, J. Zhen, S. Y. Ko, J.-O. Park, and S. Park, “Equitranslational and axially rotational microrobot using electromagnetic actuation system,” International Journal of Control, Automation and Systems, vol. 15, pp. 1342–1350, 2017.
  28. A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson, and J. J. Abbott, “Behavior of rotating magnetic micro- robots above the step-out frequency with application to control of multi-microrobot systems,” Applied Physics Letters, vol. 104, no. 14, p. 1–4, 2014.
  29. A. Ghanbari, P. H. Chang, B. J. Nelson, and H. Choi, “Magnetic actuation of a cylindrical microrobot us- ing time-delay-estimation closed-loop control: model- ing and experiments,” Smart materials and structures, vol. 23, no. 3, p. 035013, 2014.
  30. C. Pawashe, S. Floyd, and M. Sitti, “Multiple magnetic microrobot control using electrostatic anchoring,” Ap- plied Physics Letters, vol. 94, no. 16, p. 164108, 2009.
  31. H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, and Q. He, “Reconfigurable magnetic mi- crorobot swarm: Multimode transformation, locomo- tion, and manipulation,” Science robotics, vol. 4, no. 28, p. 1–15, 2019.
  32. M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson, “Octomag: An electro- magnetic system for 5-dof wireless micromanipulation,” IEEE Transactions on Robotics, vol. 26, no. 6, pp. 1006– 1017, 2010.
  33. B. Djamel, H. Houassine, N. Kabache, and M. Djeloul, “Electromagnetic nonlinear parametric study of the synrm using FEM method,” Indonesian Journal of Elec- trical Engineering and Computer Science, vol. 24, no. 2, p. 637–648, 2021.
  34. M. C. Hoang, V. H. Le, J. Kim, E. Choi, B. Kang, J.-O. Park, and C.-S. Kim, “Untethered robotic motion and rotating blade mechanism for actively locomotive biopsy capsule endoscope,” IEEE Access, vol. 7, pp. 93364– 93374, 2019.
  35. S. Jeong, H. Choi, J. Choi, C. Yu, J.-o. Park, and S. Park, “Novel electromagnetic actuation (ema) method for 3- dimensional locomotion of intravascular microrobot,” Sensors and Actuators A: Physical, vol. 157, no. 1, pp. 118–125, 2010. 30 | Bresam & Al-Mumen
  36. J. Jeong, D. Jang, and S. K. Chung, “Target drug deliv- ery technology (carrying, releasing, penetrating) using acoustic bubbles embedded in an electromagnetically driven microrobot,” in 2018 IEEE Micro Electro Me- chanical Systems (MEMS), (Belfast, UK), pp. 59–61, IEEE, 2018.
  37. C. Yu, J. Kim, H. Choi, J. Choi, S. Jeong, K. Cha, J.- o. Park, and S. Park, “Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot,” Sensors and Actuators A: Physical, vol. 161, no. 1-2, pp. 297–304, 2010.
  38. S. Jeong, H. Choi, K. Cha, J. Li, J.-o. Park, and S. Park, “Enhanced locomotive and drilling microrobot using pre- cessional and gradient magnetic field,” Sensors and Ac- tuators A: Physical, vol. 171, no. 2, pp. 429–435, 2011.
  39. S. Yuan, Y. Wan, and S. Song, “Rectmag3d: A magnetic actuation system for steering milli/microrobots based on rectangular electromagnetic coils,” Applied Sciences, vol. 10, no. 8, p. 2677, 2020.
  40. H. Choi, J. Choi, S. Jeong, C. Yu, J.-o. Park, and S. Park, “Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation sys- tem,” Smart Materials and Structures, vol. 18, no. 11, p. 115017, 2009.
  41. Q. Zhang, S. Song, P. He, H. Li, H.-Y. Mi, W. Wei, Z. Li, X. Xiong, and Y. Li, “Motion control of magnetic microrobot using uniform magnetic field,” IEEE Access, vol. 8, pp. 71083–71092, 2020.
  42. D. Kim, J. Park, H. H. Park, and S. Ahn, “Generation of magnetic propulsion force and torque for microrobot using wireless power transfer coil,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4, 2015.
  43. P. Ryan and E. Diller, “Magnetic actuation for full dexter- ity microrobotic control using rotating permanent mag- nets,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1398–1409, 2017.
  44. Z. Wu, Z. Xu, and Q. Xu, “Design and optimization of a new alternating electromagnetic-field-generation system for an inverted microscope,” Micromachines, vol. 13, no. 4, p. 542, 2022.
  45. H. Lee, D. Lee, and S. Jeon, “A two-dimensional manip- ulation method for a magnetic microrobot with a large region of interest using a triad of electromagnetic coils,” Micromachines, vol. 13, no. 3, p. 416, 2022.
  46. Z. Cai, Q. Fu, S. Zhang, C. Fan, X. Zhang, J. Guo, and S. Guo, “Performance evaluation of a magnetically driven microrobot for targeted drug delivery,” Microma- chines, vol. 12, no. 10, p. 1210, 2021.
  47. A. Rodriguez, R. Amador, R. Rojas, and F. Barrios, “Magnetic field visualisation and inductance calculation of a simple configuration surface coil at low magnetic field,” Revista mexicana de f´ısica E, vol. 52, no. 1, pp. 1– 12, 2006.
  48. S. Jeon, G. Jang, H. Choi, and S. Park, “Magnetic nav- igation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels,” IEEE transactions on magnetics, vol. 46, no. 6, pp. 1943–1946, 2010.
  49. J. Choi, J. Hwang, J.-y. Kim, and H. Choi, “Recent progress in magnetically actuated microrobots for tar- geted delivery of therapeutic agents,” Advanced Health- care Materials, vol. 10, no. 6, p. 1–24, 2021.
  50. Q. Fu, S. Guo, Y. Yamauchi, H. Hirata, and H. Ishihara, “A novel hybrid microrobot using rotational magnetic field for medical applications,” Biomedical microdevices, vol. 17, pp. 1–12, 2015.
  51. G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J. A. Ortega, K. M. Sivaraman, B. J. Nelson, and S. Pan´e, “Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic ap- plications,” Advanced healthcare materials, vol. 4, no. 2, pp. 209–214, 2015.
  52. J. Han, J. Zhen, V. Du Nguyen, G. Go, Y. Choi, S. Y. Ko, J.-O. Park, and S. Park, “Hybrid-actuating macrophage- based microrobots for active cancer therapy,” Scientific reports, vol. 6, no. 1, p. 28717, 2016.
  53. S. Li, D. Liu, Y. Hu, Z. Su, X. Zhang, R. Guo, D. Li, and Y. Lu, “Soft magnetic microrobot doped with porous silica for stability-enhanced multimodal locomotion in a nonideal environment,” ACS Applied Materials & Inter- faces, vol. 14, no. 8, pp. 10856–10874, 2022.
  54. S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Advanced Optical Materials, vol. 7, no. 16, p. 1–18, 2019.
  55. D.-D. Han, Y.-L. Zhang, J.-N. Ma, Y.-Q. Liu, B. Han, and H.-B. Sun, “Light-mediated manufacture and ma- nipulation of actuators,” Advanced Materials, vol. 28, no. 38, pp. 8328–8343, 2016. 31 | Bresam & Al-Mumen
  56. D. Li, C. Liu, Y. Yang, L. Wang, and Y. Shen, “Micro- rocket robot with all-optic actuating and tracking in blood,” Light: Science & Applications, vol. 9, no. 1, p. 84, 2020.
  57. S. Xie, N. Jiao, S. Tung, and L. Liu, “Controlled regu- lar locomotion of algae cell microrobots,” Biomedical microdevices, vol. 18, no. 3, pp. 1–9, 2016.
  58. J. Li, B. Esteban-Fern´andez de ´Avila, W. Gao, L. Zhang, and J. Wang, “Micro/nanorobots for biomedicine: De- livery, surgery, sensing, and detoxification,” Science robotics, vol. 2, no. 4, p. 1–10, 2017.
  59. M. Leal-Estrada, M. Valdez-Gardu˜no, F. Soto, and V. Garcia-Gradilla, “Engineering ultrasound fields to power medical micro/nanorobots,” Current Robotics Re- ports, vol. 2, pp. 21–32, 2021.
  60. S. Ahmed, W. Wang, L. Bai, D. T. Gentekos, M. Hoyos, and T. E. Mallouk, “Density and shape effects in the acoustic propulsion of bimetallic nanorod motors,” ACS nano, vol. 10, no. 4, pp. 4763–4769, 2016.
  61. H. X. Cao, D. Jung, H.-S. Lee, G. Go, M. Nan, E. Choi, C.-S. Kim, J.-O. Park, and B. Kang, “Micromotor ma- nipulation using ultrasonic active traveling waves,” Mi- cromachines, vol. 12, no. 2, p. 192, 2021.
  62. H. O. Caldag and S. Yesilyurt, “A simple numerical tool for the evaluation of acoustic radiation force on helices,” in 2020 IEEE International Ultrasonics Sym- posium (IUS), pp. 1–4, IEEE, 2020.
  63. Z. Eisa and H. Al-Mumen, “Characteristic control of swcnt-fet by varying its chirality and dimensions,” In- donesian Journal of Electrical Engineering and Infor- matics (IJEEI), vol. 10, no. 3, pp. 698–706, 2022.
  64. G. T. Haar, “Ultrasound bioeffects and safety,” Proceed- ings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, no. 2, pp. 363–373, 2010.
  65. V. Vandaele, P. Lambert, and A. Delchambre, “Non- contact handling in microassembly: Acoustical levita- tion,” Precision engineering, vol. 29, no. 4, pp. 491–505, 2005.
  66. W. Gao, K. M. Manesh, J. Hua, S. Sattayasamit- sathit, and J. Wang, “Hybrid nanomotor: A catalyti- cally/magnetically powered adaptive nanowire swim- mer,” Small, vol. 7, no. 14, pp. 2047–2051, 2011.
  67. M. Sitti and D. S. Wiersma, “Pros and cons: Mag- netic versus optical microrobots,” Advanced Materials, vol. 32, no. 20, p. 1906766, 2020.
  68. M. Medina-S´anchez, H. Xu, and O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers,” Therapeutic Delivery, vol. 9, no. 4, pp. 303–316, 2018.
  69. A. Aghakhani, O. Yasa, P. Wrede, and M. Sitti, “Acous- tically powered surface-slipping mobile microrobots,” Proceedings of the National Academy of Sciences, vol. 117, no. 7, pp. 3469–3477, 2020.
  70. S. Lee, L. Y. Eun, J. Y. Hwang, and Y. Eun, “Ex vivo evaluation of mechanical anisotropic tissues with high- frequency ultrasound shear wave elastography,” Sensors, vol. 22, no. 3, p. 978, 2022.
  71. H. Al-Mumen and A. A. Hamad, “Design and character- ization of an radio frequency reused energy system for nano-devices,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2595–2602, 2022.
  72. R.-F. Fung and Y.-H. Cheng, “An minimum-energy- based high-degree polynomial trajectory planning and tracking control for an lcd glass-handling robot,” Int J Intell Eng Syst, vol. 4, no. 4, pp. 1–10, 2011.
  73. Z. Cai, Q. Fu, S. Zhang, S. Guo, J. Guo, X. Zhang, and C. Fan, “Characteristic analysis of a magnetically actuated capsule microrobot in medical applications,” IEEE Transactions on Instrumentation and Measure- ment, vol. 71, pp. 1–11, 2021.
  74. W. Ma, J. Li, F. Niu, H. Ji, and D. Sun, “Robust control to manipulate a microparticle with electromagnetic coil system,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8566–8577, 2017.
  75. P. Pl¨otner, K. Yoshikawa, S. Yanagisawa, K. Yamamoto, K. Harada, N. Sugita, and M. Mitsuishi, “comparison of theoretical and measured forces on magnetically pro- pelled microrobots in a vascular phantom,” Procedia CIRP, vol. 49, pp. 157–162, 2016.
  76. H. Al-Mumen, “Characterisation of su-8 n-doping car- bon nanotube-based electronic devices,” Micro & Nano Letters, vol. 10, no. 12, pp. 670–673, 2015.
  77. A. Ghanbari, P. H. Chang, B. J. Nelson, and H. Choi, “Electromagnetic steering of a magnetic cylindrical mi- crorobot using optical feedback closed-loop control,” International Journal of Optomechatronics, vol. 8, no. 2, pp. 129–145, 2014. 32 | Bresam & Al-Mumen
  78. M. Isogai, “Wireless remote control for a vibration- driven electromagnet-type moving microrobot (fabrica- tion of third prototype microrobot and experimental re- sults for straight running and turning),” in International Symposium on Micro-NanoMechatronics and Human Science (MHS), (Nagoya, Japan), pp. 1–7, IEEE, 2017.
  79. D. Li, D. Dong, W. Lam, L. Xing, T. Wei, and D. Sun, “Automated in vivo navigation of magnetic-driven micro- robots using oct imaging feedback,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 8, pp. 2349– 2358, 2020.
  80. J. Jiang, L. Yang, and L. Zhang, “Closed-loop control of a helmholtz coil system for accurate actuation of magnetic microrobot swarms,” IEEE Robotics and Au- tomation Letters, vol. 6, no. 2, pp. 827–834, 2021.
  81. H. Ceylan, I. C. Yasa, U. Kilic, W. Hu, and M. Sitti, “Translational prospects of untethered medical micro- robots,” Progress in Biomedical Engineering, vol. 1, no. 1, p. 012002, 2019.
  82. H. Al-Mumen, F. Rao, L. Dong, and W. Li, “Characteri- zation of surface heat convection of bilayer graphene,” in 12th IEEE International Conference on Nanotechnology (IEEE-NANO), (Birmingham), pp. 1–4, IEEE, 2012.
  83. H. Al-Mumen and W. Li, “Complementary metal- su8-graphene method for making integrated graphene nanocircuits,” Micro & Nano Letters, vol. 13, no. 4, pp. 465–468, 2018.
  84. G. Go, S.-G. Jeong, A. Yoo, J. Han, B. Kang, S. Kim, K. T. Nguyen, Z. Jin, C.-S. Kim, Y. R. Seo, et al., “Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regenera- tion in vivo,” Science Robotics, vol. 5, no. 38, pp. 1–16, 2020.
  85. S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B. J. Nelson, and H. Choi, “Fabrication and character- ization of magnetic microrobots for three-dimensional cell culture and targeted transportation,” Advanced Ma- terials, vol. 25, no. 41, pp. 5863–5868, 2013.
  86. Q. Fu, S. Guo, Q. Huang, H. Hirata, and H. Ishihara, “Development and evaluation of novel magnetic actuated microrobot with spiral motion using electromagnetic actuation system,” Journal of Medical and Biological Engineering, vol. 36, pp. 506–514, 2016.
  87. Q. Fu, S. Zhang, S. Guo, and J. Guo, “Performance eval- uation of a magnetically actuated capsule microrobotic system for medical applications,” Micromachines, vol. 9, no. 12, p. 641, 2018.