A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.
The main problem of line follower robot is how to make the mobile robot follows a desired path (which is a line drawn on the floor) smoothly and accurately in shortest time. In this paper, the design and implementation of a complex line follower mission is presented by using Matlab Simulink toolbox. The motion of mobile robot on the complex path is simulated by using the Robot Simulator which is programed in Matlab to design and test the performance of the proposed line follower algorithm and the designed PID controller. Due to the complexity of selection the parameters of PID controller, the Particle Swarm Optimization (PSO) algorithm are used to select and tune the parameters of designed PID controller. Five Infrared Ray (IR) sensors are used to collect the information about the location of mobile robot with respect to the desired path (black line). Depending on the collected information, the steering angle of the mobile robot will be controlled to maintain the robot on the desired path by controlling the speed of actuators (two DC motors). The obtained simulation results show that, the motion of mobile robot is still stable even the complex maneuver is performed. The hardware design of the robot system is perform by using the Arduino Mobile Robot (AMR). The Simulink Support Package for Arduino and control system toolbox are used to program the AMR. The practical results show that the performances of real mobile robot are exactly the same of the performances of simulated mobile robot.
Four-leg voltage source inverter is an evolution of the three-leg inverter, and was ought about by the need to handle the non-linear and unbalanced loads. In this work Matlab/ Simulink model is presented using space vector modulation technique. Simulation results for worst conditions of unbalanced linear and non-linear loads are obtained. Observation for the continuity of the fundamental inverter output voltages vector in stationary coordinate is detected for better performance. Matlab programs are executed in block functions to perform switching vector selection and space vector switching.
The PH regulation of cooling tower plant in southern fertilizers company (SCF) in Iraq is important for industry pipes protection and process continuity. According to the Mitsubishi standard, the PH of cooling water must be around (7.1 to 7.8). The deviation in PH parameter affects the pipes, such as corrosion and scale. Acidic water causes pipes to corrode, and alkaline water causes pipes to scale. The sulfuric acid solution is used for PH neutralization. The problem is that the sulfuric acid is pumped manually in the cooling tower plant every two or three hours for PH regulation. The manual operation of the sulfuric acid pump makes deviations in the PH parameter. It is very difficult to control the PH manually. To solve this problem, a PID controller for PH regulation was used. The reason for using the PID controller is that the PH response is irregular through the neutralization process. The methodology is to calculate the transfer function of the PH loop using the system identification toolbox of MATLAB, to design and implement a PID controller, to optimize the PID controller response using particle swarm optimization PSO algorithm, and to make a comparison among several tuning methods such as Ziegler Nichols (ZN) tuning method, MATLAB tuner method, and PSO algorithm tuning method. The results showed that the PSO-based PID controller tuning gives a better overshoot, less rise time, and an endurable settling time than the other tuning methods. Hence, the PH response became according to the target range. The experimental results showed that the PH regulation improved using the PSO-based PID controller tuning.
Electrical issues such as old wires and faulty connections are the most common causes of arc faults. Arc faults cause electrical fires by generating high temperatures and discharging molten metal. Every year, such fires cause a considerable deal of destruction and loss. This paper proposes a new method for detecting residential series and parallel arc faults. A simulation model for the arc is employed to simulate the arc faults in series and parallel circuits. The fault features are then retrieved using a signal processing approach called Discrete Wavelet Transform (DWT) designed in MATLAB/Simulink based on the fault detection algorithm. Then db2 and one level were found appropriate mother and level of wavelet transform for extracting arc-fault features. MATLAB Simulink was used to build and simulate the arc-fault model.
In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.
This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.
Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.
This paper suggests the use of the traditional parallel resonant dc link (PRDCL) circuit to give soft switching to the Four-leg Space Vector Pulse Width Modulation (SVPWM) inverter. The proposed circuit provides a short period of zero voltage across the inverter during the zero-vectors occurrence. The transition between the zero and active vectors accomplished with zero- voltage condition (ZVC), this reduces the switching losses. Moreover, the inverter output voltage Total Harmonic Distortion (THD) not affected by circuit operation, since the zero voltage periods occur simultaneously with zero-vector periods. To confirm the results, balanced and unbalanced loads are used. Matlab/Simulink model implemented for simulation.
In this paper describes the operation of power system networks to be nearest to stability rated values limits. State estimation for monitoring and protection power system is very important because it provides a real-time (RT) Phase angle of different nodes of accuracy and then analysis and decided to choose control way (methods). In order to detect the exact situation (instant state) for power system networks parameters. In this paper proposes a new monitoring and analysis system state estimation method integrating with MATLAB environment ability, by using phasor measurement units (PMU's) technology, by this system the estimation problem, iterations numbers, and processing time will reduce. The measurements of phasors value of voltage signal and current estimated and analyzed. Mat lab/PSAT package use as a tool to design and simulate four electrical power systems networks such as INSG 24 buses, IEEE14 bus, Diyala city 10buses (IRAQ), and IEEE6 bus and then installed and applied PMU’s devices to each system. Simulation results show that the PMU's performances effectiveness appear clearly. All results show the validation of PMU’s devices as an estimator to power system networks states and a significant improvement in the accuracy of the calculation of network status. All results achieved and discussed through this paper setting up mathematical models with Graph Theoretic Procedure algorithm.
Growing interests in nature-inspired computing and bio-inspired optimization techniques have led to powerful tools for solving learning problems and analyzing large datasets. Several methods have been utilized to create superior performance-based optimization algorithms. However, certain applications, like nonlinear real-time, are difficult to explain using accurate mathematical models. Such large-scale combination and highly nonlinear modeling problems are solved by usage of soft computing techniques. So, in this paper, the researchers have tried to incorporate one of the most advanced plant algorithms known as Venus Flytrap Plant algorithm(VFO) along with soft-computing techniques and, to be specific, the ANFIS inverse model-Adaptive Neural Fuzzy Inference System for controlling the real-time temperature of a microwave cavity that heats oil. The MATLAB was integrated successfully with the LabVIEW platform. Wide ranges of input and output variables were experimented with. Problems were encountered due to heating system conditions like reflected power, variations in oil temperature, and oil inlet absorption and cavity temperatures affecting the oil temperature, besides the temperature’s effect on viscosity. The LabVIEW design followed and the results figure in the performance of the VFO- Inverse ANFIS controller.
In medium voltage and high-power drive applications, pulse width modulation (PWM) techniques are widely used to achieve effective speed control of AC motors. In real-time, an industrial drive system requires reduced hardware complexity and low computation time. The reliability of the AC drive can be improved with the FPGA (field programmable gate array) hardware equipped with digital controllers. To improve the performance of AC drives, a new FPGA-based Wavect real-time prototype controller (Xilinx ZYNQ-7000 SoC) is used to verify the effectiveness of the controller. These advanced controllers are capable of reducing computation time and enhancing the drive performance in real- time applications. The comparative performance analysis is carried out for the most commonly used voltage source inverter (VSI)-based PWM techniques such as sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) for three-phase, two-level inverters. The comparative study shows the SVPWM technique utilizes DC bus voltage more effectively and produces less harmonic distortion in terms of higher output voltage, flexible control of output frequency, and reduced harmonic distortion at output voltage for motor control applications. The simulation and hardware results are verified and validated by using MATLAB/Simulink software and FPGA-based Wavect real-time controller respectively.
The electrical load is affected by the weather conditions in many countries as well as in Iraq. The weather-sensitive electrical load is, usually, divided into two components, a weather-sensitive component, and a weather-insensitive component. The research provides a method for separating the weather-sensitive electrical load into five components. and aims to prove the efficiency of the five-component load Forecasting model. The artificial neural network was used to predict the weather-sensitive electrical load using the MATLAB R17a software. Weather data and loads were used for one year for Mosul City. The performance of the artificial neural network was evaluated using the mean squared error and the mean absolute percentage error. The results indicate the accuracy of the prediction model used, MAPE equal to 0.0402.
In this paper we present the details of methodology pursued in implementation of an HMI and Demo Temperature Monitoring application for wireless sensor-based distributed control systems. The application of WSN for a temperature monitoring and control is composed of a number of sensor nodes (motes) with a networking capability that can be deployed for monitoring and control purposes. The temperature is measured in the real time by the sensor boards that sample and send the data to the monitoring computer through a base station or gateway. This paper proposes how such monitoring system can be setup emphasizing on the aspects of low cost, energy-efficient, easy ad-hoc installation and easy handling and maintenance. This paper focuses on the overall potential of wireless sensor nodes and networking in industrial applications. A specific case study is given for the measurement of temperature (with thermistor or thermocouple), humidity, light and the health of the WSN. The focus was not on these four types of measurements and analysis but rather on the design of a communication protocol and building of an HMI software for monitoring. So, a set of system design requirements are developed that covered the use of the wireless platforms, the design of sensor network, the capabilities for remote data access and management, the connection between the WSN and an HMI software designed with MATLAB.
This work presents the mathematical model for a torso compass gait biped robot with three degrees of freedom (DOF) which is comprised of two legs and torso. Euler Lagrange method's is used to drive the dynamic equation of robot with computed control is used as a controller. The relative angles are used to simplify the robot equation and get the symmetry of the matrix. Convention controller uses critical sampling to find the value of KP and Kv in computed controller, in this paper the Genetic optimization method is used to find the optimal value of KP and Kv with suitable objective function which employ the error and overshoot to make the biped motion smooth as possible. To investigate the work of robot a Matlab 2013b is used and the result show success of modeling.
In this paper, a two-dimensional (2-D) circular-support wavelet transform (2-D CSWT) is presented. 2-D CSWT is a new geometrical image transform, which can efficiently represent images using 2-D circular spectral split schemes (circularly- decomposed frequency subspaces). 2-D all-pass functions and lattice structure are used to produce 1-level circular symmetric 2-D discrete wavelet transform with approximate linear phase 2-D filters. The classical one-dimensional (1-D) analysis Haar filter bank branches H 0 (z) and H 1 (z) which work as low-pass and high-pass filters, respectively are transformed into their 2-D counterparts H 0 (z 1 ,z 2 ) and H 1 (z 1 ,z 2 ) by applying a circular-support version of the digital spectral transformation (DST). The designed 2-D wavelet filter bank is realized in a separable architecture. The proposed architecture is simulated using Matlab program to measure the deflection ratio (DR) of the high frequency coefficient to evaluate its performance and compare it with the performance of the classical 2-D wavelet architecture. The correlation factor between the input and reconstructed images is also calculated for both architectures. The FPGA (Spartan-3E) Kit is used to implement the resulting architecture in a multiplier-less manner and to calculate the die area and the critical path or maximum frequency of operation. The achieved multiplier-less implementation takes a very small area from FPGA Kit (the die area in 3-level wavelet decomposition takes 300 slices with 7% occupation ratio only at a maximum frequency of 198.447 MHz).
This paper principally advises a simple and reliable control for Static Synchronous Compensator (STATCOM) in a stand-alone wind driven self-excited induction generator power system. The control was proposed based on instantaneous P-Q theory. The advised control enjoys the merits of robustness, reliability and simplicity. The paper also proposes a dimensioning procedure for the STATCOM that involves advising an annotative analytical expression for sizing the DC-link capacitor. This procedure has the advantages of applicability for different reactive power compensators that depend on a separate DC-link in its operation. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised control under rigorous operating scenarios. The results show the feasibility, reliability and practicability of the proposed controller.
The Intelligent Control of Vibration Energy Harvesting system is presented in this paper. The harvesting systems use a me- chanical vibration to generate electrical energy in a suitable form for use. Proportional-Integrated-derivative controller and Fuzzy Logic controller have been suggested; their parameters are optimized using a new heuristic algorithm, the Camel Trav- eling Algorithm(CTA). The proposed circuit Simulink model was constructed in Matlab facilities, and the model was tested under various operating conditions. The results of the simulation using the CTA was compared with two other methods.
This paper proposes a new control circuit to control the switching of the main switches of the used Zero Current Zero Voltage Transition (ZCZVT) inverter to ensure Zero Current and Zero Voltage Switching (ZCZVS). The reverse recovery losses of the main diodes are minimized and the auxiliary switches of the commutation cell are turned on at Zero Current Switching (ZCS) and off at ZCZVS. The commutation losses are practically reduced to zero due to ZCS. Sinusoidal Pulse Width Modulation (SPWM) is used to perform the switching of the power semiconductor devices and to control the output voltage value. MATLAB software is used to simulate the inverter circuit. Simulation results are presented to demonstrate the feasibility of the proposed control circuit.
The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.
Fast and accurate frequency estimation is essential in various engineering applications, including control systems, communications, and resonance sensing systems. This study investigates the effect of sample size on the interpolation algorithm of frequency estimation. In order to enhance the accuracy of frequency estimation and performance, we describe a novel method that provides a number of approaches for calculating and defending the sample size for of the window function designs, whereas, the correct choice of the type and the size of the window function makes it possible to reduce the error. Computer simulation using Matlab / Simulink environment is performed to investigate the proposed procedure’s performance and feasibility. This study performs the comparison of the interpolation algorithm of frequency estimation strategies that can be applied to improve the accuracy of the frequency estimation. Simulation results shown that the proposed strategy with the Parzen and Flat-top gave remarkable change in the maximum error of frequency estimation. They perform better than the conventional windows at a sample size equal to 64 samples, where the maximum error of frequency estimation is 2.13e-2 , and 2.15e-2 for Parzen and Flat-top windows, respectively. Moreover, the efficiency and performance of the Nuttall window also perform better than other windows, where the maximum error is 7.76×10-5 at a sample size equal to 8192. The analysis of simulation result showed that when using the proposed strategy to improve the accuracy of the frequency estimation, it is first essential to evaluate what is the maximum number of samples that can be obtained, how many spectral lines should be used in the calculations, and only after that choose a suitable window.
The increasing demand for electricity due to population expansion has led to frequent interruptions in electrical power, so there are backup power lines everywhere, especially in the sectors of education, health, banking, transportation and communications. DC sources are beginning to become widely spread in terms of low maintenance requirements, no need for refueling, and no pollutant emission in these institutions. The problems of DC systems are; losses in DC system components, and change in output voltage as loads change. This research presents a power system that generates 1760W AC power from batteries bank, the system consists of a twin inverter to reduce losses in switches and filters, and thus improving the efficiency and the power factor of the system, and fuzzy logic controllers to regulate the output voltage of the converter and inverter. Modeling and simulation in MATLAB / Simulink showed obtaining a constant load voltage with acceptable values of total harmonics distortion (THD) under different conditions of loads and batteries.
Microgrids (ℳ-grids) can be thought of as a small-scale electrical network comprised of a mix of Distributed Generation (DG) resources, storage devices, and a variety of load species. It provides communities with a stable, secure, and renewable energy supply in either off-grid (grid-forming) or on-grid (grid-following) mode. In this work, a control strategy of coordinated power management for a Low Voltage (LV) ℳ-grid with integration of solar Photovoltaic (PV), Battery Energy Storage System (BESS) and three phase loads operated autonomously or connected to the utility grid has been created and analyzed in the Matlab Simulink environment. The main goal expressed here is to achieve the following points: (i) grid following, grid forming modes, and resynchronization mode between them, (ii) Maximum Power Point Tracking (MPPT) from solar PV using fuzzy logic technique, and active power regulator based boost converter using a Proportional Integral (PI) controller is activated when a curtailment operation is required, (iii) ℳ-grid imbalance compensation (negative sequence) due to large single-phase load is activated, and (iv) detection and diagnosis the fault types using Discrete Wavelet Transform (DWT). Under the influence of irradiance fluctuation on solar plant, the proposed control technique demonstrates how the adopted system works in grid- following mode (PQ control), grid- formation, and grid resynchronization to seamlessly connect the ℳ-grid with the main distribution system. In this system, a power curtailment management system is introduced in the event of a significant reduction in load, allowing the control strategy to be switched from MPPT to PQ control, permitting the BESS to absorb excess power. Also, in grid-following mode, the BESS's imbalance compensation mechanism helps to reduce the negative sequence voltage that occurs at the Point of Common Coupling (PCC) bus as a result of an imbalance in the grid's power supply. In addition to the features described above, this system made use of DWT to detect and diagnose various fault conditions.
In this paper two theoretical models have been considered for the prediction of path loss for two different districts in Mosul city, using MATLAB 7.4 program. The Walfisch-Ikegami (W-I) model for uniform heights and similar buildings in the Karama district . The other model is Okumura-Hata (OH) model applied for irregular and dissimilar buildings in the Almajmoa'a district. The information buildings heights are obtained from the civil Eng. Depart. in Mosul university. In this paper it can be shown that The effect of distance in regular area (karama) on path loss is about 10 dB larger than irregular area (Almajmoa'a), and The effect of varying antenna height in regular area (karama) on path loss is about 7 dB greater than irregular area (Almajmoa'a) for 40 meter variation.
The continuously ever-growing demand for the electrical power causing the continuous expansion and complexity of power systems, environmental and economic factors forcing the system to work near the critical limits of stability, so research's stability have become research areas worthy of attention in the resent day. The present work includes two phases: The first one is to determine the Voltage Stability Index for the more insensitive load bus to the voltage collapse in an interconnected power system using fast analyzed method based on separate voltage and current for PQ buses from these of PV buses, while the second phase is to suggested a simulated optimization technique for optimal voltage stability profile all around the power system. The optimization technique is used to adjust the control variables elements: Generator voltage magnitude, active power of PV buses, VAR of shunt capacitor banks and the position of transformers tap with satisfied the limit of the state variables (load voltages, generator reactive power and the active power of the slack bus). These control variables are main effect on the voltage stability profile to reach the peak prospect voltage stable loading with acceptable voltage profile. An optimized voltage collapse based on Particle Swarm Optimization has been tested on both of the IEEE 6 bus system and the Iraqi Extra High Voltage 400 kV Grid 28 bus . To ensure the effectiveness of the optimization technique a comparison between the stability indexes for load buses before and after technical application are presented. Simulation results have been executed using Matlab software). Keyword: Voltage Stability Indicator; voltage collapse; Stability of Extra High Voltage Grid; PSO optimization technique.
This work implying the design of hiding system that hides a gray scale image into another gray scale image using two-dimensional wavelet packet transform. The proposed hiding scheme uses Wavelet Packet Transform (WPT) to embed data elements of the secret image in different frequency bands of the cover image. The data elements of the secrete image are placed within DWT subspaces after simple treatment in order to reduce its significance on the resulting image and to increase security. The resulting image (the cover image within which the secret image is hidden) is called stego_image. Stego_image is closely related to the cover image and does not show any details of the secret image. The proposed system achieves perfect reconstruction of the secret image. All programs in this work is written by MATLAB 7.
The unprogrammed penetration for the loads in the distribution networks make it work in an unbalancing situation that leads to unstable operation for those networks. the instability coming from the imbalance can cause many serious problems like the inefficient use of the feeders and the heat increased in the distribution transformers. The demands response can be regarded as a modern solution for the problem by offering a program to decreasing the consumption behavior for the program's participators in exchange for financial incentives in specific studied duration according to a direct order from the utility. The paper uses a new suggested algorithm to satisfy the direct load control demand response strategy that can be used in solving the unbalancing problem in distribution networks. The algorithm procedure has been simulated in MATLAB 2018 to real data collected from the smart meters that have been installed recently in Baghdad. The simulation results of applying the proposed algorithm on different cases of unbalancing showed that it is efficient in curing the unbalancing issue based on using the demand response strategy.
In maze maneuvering, it is needed for a mobile robot to feasibly plan the shortest path from its initial posture to the desired destination in a given environment. To achieve that, the mobile robot is combined with multiple distance sensors to assist the navigation while avoiding obstructing obstacles and following the shortest path toward the target. Additionally, a vision sensor is used to detect and track colored objects. A new algorithm is proposed based on different type of utilized sensors to aid the maneuvering of differential drive mobile robot in an unknown environment. In the proposed algorithm, the robot has the ability to traverse surrounding hindrances and seek for a particular object based on its color. Six infrared sensors are used to detect any located obstacles and one color detection sensor is used to locate the colored object. The Mobile Robotics Simulation Toolbox in Matlab is used to test the proposed algorithm. Three different scenarios are studied to prove the efficiency of the proposed algorithm. The simulation results demonstrate that the mobile robot has successfully accomplished the tracking and locating of a colored object without collision with hurdles.
This paper suggests the use of the traditional proportional-integral-derivative (PID) controller to control the speed of multi Permanent Magnet Synchronous Motors (PMSMs). The PMSMs are commonly used in industrial applications due to their high steady state torque, high power, high efficiency, low inertia and simple control of their drives compared to the other motors drives. In the present study a mathematical model of three phase four poles PMSM is given and simulated. The closed loop speed control for this type of motors with voltage source inverter and abc to dq blocks are designed. The multi (Master/Slaves approach) method is proposed for PMSMs. Mathwork's Matlab/Simulink software package is selected to implement this model. The simulation results have illustrated that this control method can control the multi PMSMs successfully and give better performance.
Upkeeping the Battery State-Of-Charge (SoC) and its life are of great significance in Battery Electric Vehicle (BEV) & Hybrid Electric Vehicles (HEV). This is possible by integrating Solar Photovoltaic Panels (PPs) on the Roof-top of the BEVs & HEVs. However, unlike Solar Powered Vehicle Charging stations and other PV applications where the solar panels are installed in such a way to extract the maximum Photon energy incident on the panel, vehicle Roof-top mount Solar PPs face many challenges in extracting maximum Power due to partial shading issues especially under dynamic conditions when passing under trees, high rise buildings and cloud passages. This paper proposes a new strategy called “Super-capacitor Assisted Photovoltaic Array”. In which Photovoltaic Modules are integrated with Super-capacitors to improve the transient performance of the Photovoltaic Array system. The design of proposed Super-capacitor Assisted PV array is validated & its performance is compared with conventional PV array in Matlab/ Simulink environment.
In today's chemical, refinery, and petrochemical sectors, separation tanks are one of the most significant separating processes. One or more separation tanks must operate consistently and reliably for multiple facilities' safe and efficient operation. Therefore, in this paper, a PI controller unit has been designed to improve the performance of the tank level controller of the industrial process in Basrah Refinery Station. The overall system mathematical model has been derived and simulated by MATLAB to evaluate the performance. Further, to improve the performance of the tank level controller, optimal PI parameters should be calculated, which Closed-Loop PID Autotuner has been used for this task. Several experiments have been conducted to evaluate the performance of the proposed system. The results indicated that the PI controller based on the Autotuner Method is superior to the conventional PI controller in terms of ease to implement and configuration also less time to get optimal PI gains.
Among all control methods for induction motor drives, Direct Torque Control (DTC) seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysterics controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, and the problems related to its implementation, especially the torque ripple and the possible improvements to reduce this torque ripple by using a proposed fuzzy based duty cycle controller. The effectiveness of the duty ratio method was verified by simulation using Matlab/Simulink software package. The results are compared with that of the traditional DTC models.
This paper presents a simple method for the design of Chaotic Linear Feedback Shift Register (CLFSR) system. The proposed method is based on a combination of two known systems. The first is called Linear Feedback Shift Register (LFSR) system, and the other is called Chaotic Map system. The main principle of the proposed system is that, the output of the LFSR is modified by exclusive-or (XOR) it with the stream bit that is generated by using the chaotic map system to eliminate the linearity and the repeating in the output of the LFSR system. The proposed system is built under Matlab environment and the quality of sequence generation tested by using standard tests which shows that the proposed system is a good random number generator that overcome the linearity and repeating disadvantages.
Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, security, and copyright. The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. Digital audio provides a suitable cover for high-throughput steganography. In this paper a high robustness system against the attackers in hiding of color images is presented. We used the multi-resolution discrete wavelet transform in hiding process. The JPEG format type for color images and WAV format for speech cover signal that used in test of system. Programs and graphics are executed by using MATLAB version 6.5 programs.
Multi-level inverters, as a result of the significant contributions they have made to the fields of high voltage and renewable energy applications, MLI has earned a prestigious place in the field of industrial electronics applications. The use of MLI makes it possible to generate an alternating voltage from a DC voltage or from voltages that are continuously applied thanks to this capability. The quality of the produced wave depends on minimizing the level of total harmonic distortion (THD) in the ensuing output voltage. Increasing the total number of levels is required in order to bring down the THD. The bigger the number of layers, the lower the THD. On the other hand, this necessitates an increase in the number of power switches that are utilized, in addition to an increase in the number of DC sources for certain types. A greater number of levels are achieved in this work with a reduced number of switches, and the DC source necessitates the use of specialized control over the switches as well as the grading of the DC source values. In order to demonstrate that the suggested converter achieves the needed outcomes, the MATLAB simulator is utilized.
This paper addressed the design of online uninterruptible power supply (UPS) system with a low frequency transformer for isolation, based on given specifications which include bypass switch and battery and taken into account the concentrated on open loop operation. Depending on the application, the online UPS system is composed by two stage conversions of AC/DC and DC/AC, the enclosure of these freeloading effects of all components and devices is very important to design the UPS system for acceptable performance. The initial stage of the design is based on the theoretical calculations and few assumptions have been made throughout the design. Simulation work has been carried out by MATLAB/Simulink program to validate the operation of the online UPS system with low frequency transformer isolation. The analysis of the results are presented and the justifications with regards to performance evaluation parameters which some are not satisfied the design specifications are discussed in details.
In this paper, we focus on ensuring encrypted vehicular communication using wireless controller area network performance at high node densities, by means of Dedicated Short-Range Communication (DSRC) algorithms. We analyses the effect of the vehicular communication parameters, message-rate, data-rate, transmission power and carrier sensing threshold, on the application performance. After a state-of-the-art analysis, we propose a data-rate DSRC algorithm. Simulation studies show that DSRC performs better than other decentralized vehicular communication algorithms for a wide range of application requirements and densities. Vehicular communication plays one of the most important roles for future autonomous vehicle. We have systematically investigated the impact of vehicular communication using the MATLAB application platform and achieved an accuracy of 93.74% after encrypting all the communications between the vehicles and securing them by applying the encryption on V2V communication in comparison with the existing system of Sensor Networks which stands at 92.97%. The transmission time for the encryption is 165 seconds while the rate of encryption is as low as 120 Mbps for the proposed awareness range of vehicles to vehicle using DSRC algorithm in Wireless-Controller Area Network for communication. Experimental results show that our proposed method performs 3% better than the recently developed algorithms.
The identification of system parameters plays an essential role in system modeling and control. This paper presents a parameter estimation for a permanent magnetic DC motor using the simulink design optimization method. The parameter estimation may be represented as an optimization problem. Firstly, the initial values of the DC motor parameters are extracted using the dynamic model through measuring the values of voltage, current, and speed of the motor. Then, these values are used as an initial value for simulink design optimization. The experimentally input- output data can be collected using a suggested microcontroller based circuit that will be used later for estimating the DC motor parameters by building a simulink model. Two optimization algorithms are used, the pattern search and the nonlinear least square. The results show that the nonlinear least square algorithm gives a more accurate result that almost approaches to the actual measured speed response of the motor. )
Linearization sensors characteristics becomes very interest field for researchers due to the importance in enhance the system performance, measurement accuracy, system design simplicity (hardware and software), reduce system cost, ..etc. in this paper, two approaches has been introduced in order to linearize the sensor characteristics; first is signal condition circuit based on lock up table (LUT) which this method performed for linearize NTC sensor characteristic. Second is ratiometric measurement equation which this method performed for linearize LVDT sensor characteristic. The proposed methods has been simulated by MATLAB, and then implemented by using Anadigm AN221E04 Field Programmable Analog Array (FPAA) development kit which several experiments performed in order to improve the performance of these approaches.
In this article, a robust control technique for 2-DOF helicopter system is presented. The 2-DOF helicopter system is 2 inputs and 2 outputs system that is suffering from the high nonlinearity and strong coupling. This paper focuses on design a simple, robust, and optimal controller for the helicopter system. Moreover, The proposed control method takes into account effects of the measurement noise in the closed loop system that effect on the performance of controller as well as the external disturbance. The proposed controller combines low pass filter with robust PID controller to ensure good tracking performance with high robustness. A low pass filter and PID controller are designed based H∞weighted mixed sensitivity. Nonlinear dynamic model of 2-DOF helicopter system linearized and then decoupled into pitch and yaw models. Finally, proposed controller applied for each model. Matlab program is used to check effectiveness the proposed control method. Simulation results show that the proposed controllers has best tracking performance with no overshot and the smallest settling time with respect to standard H∞and optimized PID controller.
The occurrence of Sub-Synchronous Resonance (SSR) phenomena can be attributed to the interaction that takes place between wind turbine generators and series-compensated transmission lines. The Doubly-Fed Induction Generator (DFIG) is widely recognized as a prevalent generator form employed in wind energy conversion systems. The present paper commences with an extensive exposition on modal analysis techniques employed in a series of compensated wind farms featuring Doubly Fed Induction Generators (DFIGs). The system model encompasses various components, including the aerodynamics of a wind turbine, an induction generator characterized by a sixth-order model, a second- order two-mass shaft system, a series compensated transmission line described by a fourth-order model, controllers for the Rotor-Side Converter (RSC) and the Grid-Side Converter (GSC) represented by an eighth-order model, and a first-order DC-link model. The technique of eigenvalue-based SSR analysis is extensively utilized in various academic and research domains. The eigenvalue technique depends on the initial conditions of state variables to yield an accurate outcome. The non-iterative approach, previously employed for the computation of initial values of the state variables, has exhibited issues with convergence, lack of accuracy, and excessive computational time. The comparative study evaluates the time-domain simulation outcomes under different wind speeds and compensation levels, along side the eigenvalue analysis conducted using both the suggested and non-iterative methods. This comparative analysis is conducted to illustrate the proposed approach efficacy and precision. The results indicate that the eigenvalue analysis conducted using the proposed technique exhibits more accuracy, as it aligns with the findings of the simulations across all of the investigated instances. The process of validation is executed with the MATLAB program. Within the context of the investigation, it has been found that increasing compensation levels while simultaneously decreasing wind speed leads to system instability. Therefore, modifying the compensation level by the current wind speed is advisable.
In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.
In a human-robot interface, the prediction of motion, which is based on context information of a task, has the potential to improve the robustness and reliability of motion classification to control human-assisting manipulators. The objective of this work is to achieve better classification with multiple parameters using K-Nearest Neighbor (K-NN) for different movements of a prosthetic arm. The proposed structure is simulated using MATLAB Ver. R2009a, and satisfied results are obtained by comparing with the conventional recognition method using Artificial Neural Network (ANN). Results show the proposed K-NN technique achieved a uniformly good performance with respect to ANN in terms of time, which is important in recognition systems, and better accuracy in recognition when applied to lower Signal-to-Noise Ratio (SNR) signals.
Nowadays, renewable energy is being used increasingly because of the global warming and destruction of the environment. Therefore, the studies are concentrating on gain of maximum power from this energy such as the solar energy. A sun tracker is device which rotates a photovoltaic (PV) panel to the sun to get the maximum power. Disturbances which are originated by passing the clouds are one of great challenges in design of the controller in addition to the losses power due to energy consumption in the motors and lifetime limitation of the sun tracker. In this paper, the neuro-fuzzy controller has been designed and implemented using Field Programmable Gate Array (FPGA) board for dual axis sun tracker based on optical sensors to orient the PV panel by two linear actuators. The experimental results reveal that proposed controller is more robust than fuzzy logic controller and proportional- integral (PI) controller since it has been trained offline using Matlab tool box to overcome those disturbances. The proposed controller can track the sun trajectory effectively, where the experimental results reveal that dual axis sun tracker power can collect 50.6% more daily power than fixed angle panel. Whilst one axis sun tracker power can collect 39.4 % more daily power than fixed angle panel. Hence, dual axis sun tracker can collect 8 % more daily power than one axis sun tracker .
Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperated in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy-based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with MATLAB simulation software and showed a fast and accurate trip operation.
Due to the changing flow conditions during the pipeline's operation, several locations of erosion, damage, and failure occur. Leak prevention and early leak detection techniques are the best pipeline risk mitigation measures. To reduce detection time, pipeline models that can simulate these breaches are essential. In this study, numerical modeling using COMSOL Multiphysics is suggested for different fluid types, velocities, pressure distributions, and temperature distributions. The system consists of 12 meters of 8-inch pipe. A movable ball with a diameter of 5 inches is placed within. The findings show that dead zones happen more often in oil than in gas. Pipe insulation is facilitated by the gas phase's thermal inefficiency (thermal conductivity). The fluid mixing is improved by 2.5 m/s when the temperature is the lowest. More than water and gas, oil viscosity and dead zones lower maximum pressure. Pressure decreases with maximum velocity and vice versa. The acquired oil data set is utilized to calibrate the Support Vector Machine and Decision Tree techniques using MATLAB R2021a, ensuring the precision of the measurement. The classification result reveals that the Support Vector Machine (SVM) and Decision Tree (DT) models have the best average accuracy, which is 98.8%, and 99.87 %, respectively.
The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP).CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID) controller and the second are intelligent controllers (fuzzy and neural controllers).The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.
The last few years Quadrotor became an important topic, many researches have implemented and tested concerning that topic. Quadrotor also called an unmanned Aerial Vehicle (UAV), it's highly used in many applications like security, civil applications, aid, rescue and a lot of other applications. It’s not a conventional helicopter because of small size, low cost and the ability of vertical and takeoff landing (VTOL). The models kept an eye on quadrotors were presented, the advancement of this new kind of air vehicle is hindered for a very long while because of different reasons, for example, mechanical multifaceted nature, enormous size and weight, and challenges in charge particularly. Just as of late a lot of interests and endeavors have been pulled in on it; a quadrotor has even become a progressively discretionary vehicle for useful application. Quadrotor can be used in variable, different , outdoor and indoor missions; these missions should be implemented with high value of accuracy and quality. In this work two scenarios suggested for different two missions. First mission the quadrotor will be used to reach different goals in the simulated city for different places during one flight using path following algorithm. The second mission will be an indoor arrival mission, during that mission quadrotor will avoid obstacles by using only Pure pursuit algorithm (PPA). To show the benefit of using the new strategy it will compare with a victor field histogram algorithm (VFH) which is used widely in robotics for avoiding obstacles, the comparison will be in terms of reaching time and distance of reaching the goal. The Gazebo Simulator (GS) is used to visualize the movement of the quadrotor. The gazebo has another preferred position it helps to show the motion development of the quadrotor without managing the mathematical model of the quadrotor. The Robotic Operating System (ROS) is used to transfer the data between the MATLAB Simulink program and the Gazebo Simulator. The diversion results show that, the proposed mission techniques win to drive the quarter on the perfect route similarly at the limit with regards to the quadrotor to go without hitting any obstacle in the perfect way.
Load Frequency Control (LFC) is a basic control strategy for proper operation of the power system. It ensures the ability of each generator in regulating its output power in such way to maintain system frequency and tie-line power of the interconnected system at prescribed levels. This article introduces comprehensive comparative study between Chaos Optimization Algorithm (COA) and optimal control approaches, such as Linear Quadratic Regulator (LQR), and Optimal Pole Shifting (OPS) regarding the tuning of LFC controller. The comparison is extended to the control approaches that result in zero steady-state frequency error such as Proportional Integral (PI) and Proportional Integral Derivative (PID) controllers. Ziegler-Nicholas method is widely adopted for tuning such controllers. The article then compares between PI and PID controllers tuned via Ziegler-Nicholas and COA. The optimal control approaches as LQR and OPS have the characteristic of steady-state error. Moreover, they require the access for full state variables. This limits their applicability. Whereas, Ziegler-Nicholas PI and PID controllers have relatively long settling time and high overshoot. The controllers tuned via COA remedy the defects of optimal and zero steady-state controllers. The performance adequacy of the proposed controllers is assessed for different operating scenarios. Matlab and its dynamic platform, Simulink, are used for stimulating the system under concern and the investigated control techniques. The simulation results revealed that COA results in the smallest settling time and overshoot compared with traditional controllers and zero steady-state error controllers. In the overshoot, COA produces around 80% less than LQR and 98.5% less than OPS, while in the settling time, COA produces around 81% less than LQR and 95% less than OPS. Moreover, COA produces the lowest steady-state frequency error. For Ziegler-Nicholas controllers, COA produces around 53% less in the overshoot and 42% less in the settling time.
Efficient energy collection from photovoltaic (PV) systems in environments that change is still a challenge, especially when partial shading conditions (PSC) come into play. This research shows a new method called Maximum Power Point Tracking (MPPT) that uses fuzzy logic and neural networks to make PV systems more flexible and accurate when they are exposed to PSC. Our method uses a fuzzy logic controller (FLC) that is specifically made to deal with uncertainty and imprecision. This is different from other MPPT methods that have trouble with the nonlinearity and transient dynamics of PSC. At the same time, an artificial neural network (ANN) is taught to guess where the Global Maximum Power Point (GMPP) is most likely to be by looking at patterns of changes in irradiance and temperature from the past. The fuzzy controller fine-tunes the ANN’s prediction, ensuring robust and precise MPPT operation. We used MATLAB/Simulink to run a lot of simulations to make sure our proposed method would work. The results showed that combining fuzzy logic with neural networks is much better than using traditional MPPT algorithms in terms of speed, stability, and response to changing shading patterns. This innovative technique proposes a dual-layered control mechanism where the robustness of fuzzy logic and the predictive power of neural networks converge to form a resilient and efficient MPPT system, marking a significant advancement in PV technology.
This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.
The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.
Inter-symbol interference (ISI) exhibits major distortion effect often appears in digital storage and wireless communica- tion channels. The traditional decision feedback equalizer (DFE) is an efficient approach of mitigating the ISI effect using appropriate digital filter to subtract the ISI. However, the error propagation in DFE is a challenging problem that degrades the equalization due to the aliasing distorted symbols in the feedback section of the traditional DFE. The aim of the proposed approach is to minimize the error propagation and improve the modeling stability by incorporating adequate components to control the training and feedback mode of DFE. The proposed enhanced DFE architecture consists of a decision and controller components which are integrated on both the transmitter and receiver sides of communication system to auto alternate the DFE operational modes between training and feedback state based on the quality of the received signal in terms of signal-to-noise ratio SNR. The modeling architecture and performance validation of the proposed DFE are implemented in MATLAB using a raised-cosine pulse filter on the transmitter side and linear time-invariant channel model with additive gaussian noise. The equalizer capability in compensating ISI is evaluated during different operational stages including the training and DFE based on different channel distortion characteristics in terms of SNR using both 0.75 and 1.5 symbol duration in unit delay fraction of FIR filter. The simulation results of eye-diagram pattern showed significant improvement in the DFE equalizer when using a lower unit delay fraction in FIR filter for better suppressing the overlay trails of ISI. Finally, the capability of the proposed approach to mitigate the ISI is improved almost double the number of symbol errors compared to the traditional DFE.
A torsional rotating system is considered for the investigation of passive vibration control using dual loop controllers Proportional-Integral-Derivative (PID) with derivative (D) gain and Proportional – Derivative (PD) with Integral (I) controllers. The controllers are used as low pass filters. Simulation of the models using Matlab-Simulink have been built in this work for torsional vibration control. A comparison between the two controllers with uncontrolled system have been carried out. Results show that the PD – I control is the best method which gives better stability response than the PID – D control.
As a key type of mobile robot, the two-wheel mobile robot has been developed rapidly for varied domestic, health, and industrial applications due to human-like movement and balancing characteristics based on the inverted pendulum theory. This paper presents a developed Two-Wheel Self-Balanced Robot (TWSBR) model under road disturbance effects and simulated using MATLAB Simscape Multibody. The considered physical-mechanical structure of the proposed TWSBS is connected with a Simulink controller scheme by employing physical signal converters to describe the system dynamics efficiently. Through the Simscape environment, the TWSBR motion is visualized and effectively analyzed without the need for complicated analysis of the associated mathematical model. Besides, 3D visualization of real-time behavior for the implemented TWSBR plant model is displayed by Simulink Mechanics Explorer. Robot balancing and stability are achieved by utilizing Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers' approaches considering specific control targets. A comparative study and evaluation of both controllers are conducted to verify the robustness and road disturbance rejection. The realized performance and robustness of developed controllers are observed by varying object-carrying loaded up on mechanical structure layers during robot motion. In particular, the objective weight is loaded on the robot layers (top, middle, and bottom) during disturbance situations. The achieved findings may have the potential to extend the deployment of using TWSBRs in the varied important application.
WiMAX (worldwide interoperability for microwave access) is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various channel impairments and for variety of modulation schemes. From the simulation results, we found that WiMAX system works well in both AWGN and multipath fading channels, but under certain constraints that are addressed in this paper.
The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).
Although the advanced technology in satellites and optical fiber communication systems exists now a day, but the researches in HF sky wave propagation for Mesopotamia (Iraq) area is suffered from shortage. In this paper, the novelty is that the communication path from Baghdad to any distance out of Iraqi border had been predicted, calculated and measured experimentally by using real data (Ionogram) supplemented by Nicosia Ionosound station 1000Km from Baghdad and a radio station model TS-130SE as a transmitter. The Predicted results generated by using MATLAB and NTIA/ITS software package like VOACAP. Radio communication using TS-130SE with 36 countries had been done experimentally. A comparison between the theoretical and experimental results was done. The experimental results were in the range of the predicated results which emphasis proposed method Presented in this paper .
In this paper, a proposed control strategy is presented to improve the performance of the pulse width modulation (PWM) boost type rectifier when operating under different supply voltage conditions (balanced, unbalanced, and distorted three-phase supply voltages). The proposed control strategy is divided into two parts, the first part is voltage controller and the second part is current controller. In the voltage controller, Repetitive Controller (RC) is used to reduce the even order harmonics in the regulated output dc voltage so small output capacitor (filter) is used instead of large capacitor. RC also reduces the even order harmonics which appear in the reflected dc current (I MAX ), this leads to reduce the odd order harmonics which appear in the input currents. While in the current controller, Enhanced Phase Locked Loop (EPLL) technique is used to obtain sinusoidal and balanced three phases, to construct the reference currents, which are in phase with the fundamental supply voltages. Therefore, the supply-side power factor is kept close to unity. A proportional controller is used to give excellent tracking between the line and the reference currents. The complete system with the proposed control strategy are simulated using Matlab/Simulink. The results for the complete system using repetitive voltage controller are obtained and compared to the results of the system with the conventional voltage controller (Proportional-Integral (PI) controller connected in series with a Low Pass Filter (LPF)). The results with the repetitive controller show better response and stable operation in the steady state under different input voltage conditions, as well as in the transient response under changing the load condition. — Enhanced Phase Locked Loop,Repetitive Controller,Three-Phase PWM Boost Rectifier, Proportional-Integral controller. I. INTRODUCTION The boost type PWM rectifier has been increasingly employed in recent years since it offers the possibility of a low distortion line current withnear unity power factor for any load condition. Another advantage over traditional phase-controlled thyristor rectifiers is its capability for nearly instantaneous reversal of power flow. Unfortunately, the features of the PWM boost type rectifier are fully realized only when the supply three phase input voltages are balanced. It has been shown that unbalanced input voltages cause an abnormal second order harmonic at the dc output voltage, which reflects back to the input causing third-order harmonic current to flow. Next, the third-order harmonic current causes a fourth-order harmonic voltage on the dc bus, and so on. This results in the appearance of even harmonics at the dc output and odd harmonics in the input currents. An attempt was made to reduce low order harmonics at the input and the output of the PWM Boost Type Rectifier under unbalance input voltages [1]. The authors in [2] used two synchronous reference frames: a positive- sequence current regulated by a
In this work, the phase lock loop PLL-based controller has been adopted for tracking the resonant frequency to achieve maximum power transfer between the power source and the resonant load. The soft switching approach has been obtained to reduce switching losses and improve the overall efficiency of the induction heating system. The jury’s stability test has been used to evaluate the system’s stability. In this article, a multilevel inverter has been used with a series resonant load for an induction heating system to clarify the effectiveness of using it over the conventional full-bridge inverter used for induction heating purposes. Reduced switches five-level inverter has been implemented to minimize switching losses, the number of drive circuits, and the control circuit’s complexity. A comparison has been made between the conventional induction heating system with full bridge inverter and the induction heating system with five level inverter in terms of overall efficiency and total harmonic distortion THD. MATLAB/ SIMULINK has been used for modeling and analysis. The mathematical analysis associated with simulation results shows that the proposed topology and control system performs well.
This work deals with the simulation model of multi-machines system as cold rolling mill is considered as application. Drivers of rolling system are a set of DC motors, which have extend applications in factories as aluminum rolling. Interconnection of multi DC motors in such a way that they are synchronized in their rotational speed. In cold rolling, the accuracy of the strip exit thickness is a very important factors. To realize accuracy in the strip exit thickness, Automatic Gauge Control system is used. In this paper MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results were presented to verify proposed model of cold rolling mill.
This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.
A Matlab/Simulink model for the Finite Control Set Model Predictive current Control FCS-MPC based on cost function optimization, with current limit constraints for four-leg VSI is presented in this paper, as a new control algorithm. The algorithm selects the switching states that produce minimum error between the reference currents and the predicted currents via optimization process, and apply the corresponding switching control signals to the inverter switches. The new algorithm also implements current constraints which excludes any switching state that produces currents above the desired references. Therefore, the system response is enhanced since there is no overshoots or deviations from references. Comparison is made between the Space Vector Pulse Width Modulation SVPWM and the FCS-MPC control strategies for the same load conditions. The results show the superiority of the new control strategy with observed reduction in inverter output voltage THD by 10% which makes the FCS-MPC strategy more preferable for loads that requires less harmonics distortion.
Audio encryption has gained popularity in a variety of fields including education, banking over the phone, military, and private audio conferences. Data encryption algorithms are necessary for processing and sending sensitive information in the context of secure speech conversations. In recent years, the importance of security in any communications system has increased. To transfer data securely, a variety of methods have been used. Chaotic system-based encryption is one of the most significant encryption methods used in the field of security. Chaos-based communication is a promising application of chaos theory and nonlinear dynamics. In this research, a chaotic algorithm for the new chaotic chameleon system was proposed, studied, and implemented. The chameleon chaotic system has been preferred to be employed because it has the property of changing from self-excited (SA) to hidden-attractor (HA) which increases the complexity of the system dynamics and gives strength to the encryption algorithm. A chaotic chameleon system is one in which, depending on the parameter values, the chaotic attractor alternates between being a hidden attractor and a self-excited attractor. This is an important feature, so it is preferable to use it in cryptography compared to other types of chaotic systems. This model was first implemented using a Field Programmable Gate Array (FPGA), which is the first time it has been implemented in practical applications. The chameleon system model was implemented using MATLAB Simulink and the Xilinx System Generator model. Self-excited, hidden, and coexisting attractors are shown in the proposed system. Vivado software was used to validate the designs, and Xilinx ZedBoard Zynq-7000 FPGA was used to implement them. The dynamic behavior of the proposed chaotic system was also studied and analysis methods, including phase portrait, bifurcation diagrams, and Lyapunov exponents. Assessing the quality of the suggested method by doing analyses of many quality measures, including correlation, differential signal-to-noise ratio (SNR), entropy, histogram analysis, and spectral density plot. The numerical analyses and simulation results demonstrate how well the suggested method performs in terms of security against different types of cryptographic assaults.
This article emphasizes on a strategy to design a Super Twisting Sliding Mode Control (STSMC) method. The proposed controller depends on the device of Field Programmable Gate Array (FPGA) for controlling the trajectory of robot manipulator. The gains of the suggested controller are optimized using Chaotic Particle Swarm Optimization (PSO) in MATLAB toolbox software and Simulink environment. Since the control systems speed has an influence on their stability requirements and performance, (FPGA) device is taken in consideration. The proposed control method based on FPGA is implemented using Xilinx block sets in the Simulink. Integrated Software Environment (ISE 14.7) and System Generator are employed to create the file of Bitstream which can be downloaded in the device of FPGA. The results show that the designed controller based of on the FPGA by using System Generator is completely verified the effectiveness of controlling the path tracking of the manipulator and high speed. Simulation results explain that the percentage improvement in the Means Square Error (MSEs) of using the STSMC based FPGA and tuned via Chaotic PSO when compared with the same proposed controller tuned with classical PSO are 17.32 % and 13.98 % for two different cases of trajectories respectively.
According to the growing interest in the soft robotics research field, where various industrial and medical applications have been developed by employing soft robots. Our focus in this paper will be the Pneumatic Muscle Actuator (PMA), which is the heart of the soft robot. Achieving an accurate control method to adjust the actuator length to a predefined set point is a very difficult problem because of the hysteresis and nonlinearity behaviors of the PMA. So the construction and control of a 30 cm soft contractor pneumatic muscle actuator (SCPMA) were done here, and by using different strategies such as the PID controller, Bang-Bang controller, Neural network controller, and Fuzzy controller, to adjust the length of the (SCPMA) between 30 cm and 24 cm by utilizing the amount of air coming from the air compressor. All of these strategies will be theoretically implemented using the MATLAB/Simulink package. Also, the performance of these control systems will be compared with respect to the time-domain characteristics and the root mean square error (RMSE). As a result, the controller performance accuracy and robustness ranged from one controller to another, and we found that the fuzzy logic controller was one of the best strategies used here according to the simplicity of the implementation and the very accurate response obtained from this method.
PID controller is the most popular controller in many applications because of many advantages such as its high efficiency, low cost, and simple structure. But the main challenge is how the user can find the optimal values for its parameters. There are many intelligent methods are proposed to find the optimal values for the PID parameters, like neural networks, genetic algorithm, Ant colony and so on. In this work, the PID controllers are used in three different layers for generating suitable control signals for controlling the position of the UAV (x,y and z), the orientation of UAV (θ, Ø and ψ) and for the motors of the quadrotor to make it more stable and efficient for doing its mission. The particle swarm optimization (PSO) algorithm is proposed in this work. The PSO algorithm is applied to tune the parameters of proposed PID controllers for the three layers to optimize the performances of the controlled system with and without existences of disturbance to show how the designed controller will be robust. The proposed controllers are used to control UAV, and the MATLAB 2018b is used to simulate the controlled system. The simulation results show that, the proposed controllers structure for the quadrotor improve the performance of the UAV and enhance its stability.
In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.
This paper focuses on the vibration suppression of a half-car model by using a modified PID controller. Mostly, car vibrations could result from some road disturbances, such as bumps or potholes transmitted to a car body. The proposed controller consists of three main components as in the case of the conventional PID controller which are (Proportional, Integral, and Derivative) but the difference is in the positions of these components in the control loop system. Initially, a linear half-car suspension system is modeled in two forms passive and active, the activation process occurred using a controlled hydraulic actuator. Thereafter, the two systems have been simulated using MATLAB/Simulink software in order to demonstrate the dynamic response. A comparison between conventional and modified PID controllers has been carried out. The resulting dynamic response of the half-car model obtained from the simulation process was improved when using a modified PID controller compared with the conventional PID controller. Moreover, the efficiency and performance of the half-car model suspension have been significantly enhanced by using the proposed controller. Thus, achieving high vehicle stability and ride comfort.
In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) signals have been employed for hand gesture identification, in which the performance of the classification process can be improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as (HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand.
In this study, the chaotic dynamics observed from a vertical cavity surface emitting lasers (VCSELS) subject to delayed optoelectronic feedback are investigated. The theoretical investigation is performed by using a MATLAB software package. The nonlinear dynamics of a VCSEL are examined using a single mode rate equations model. The key role played by system parameters such as delay time and the feedback strength on laser chaotic dynamics is addressed.