This paper presents a comprehensive analysis for the performance of heterojunction bipolar phototransistor (HPT) as an essential element for optoelectronic switch configurations. The theory of operation of the (HPT) is reviewed. Analytical expressions are drived for transistor current components, optical gain $G_{opt}$ and DC current gain $h_{FE}$ in common emitter configuration. The analysis enables one to study the influence of various structure parameters and incident optical power on the optical gain characteristics of the (HPT). Simulation results are presented for a $1.3~\mu m$ $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}/\text{InP}$ structure.
This article presents a power-efficient low noise amplifier (LNA) with high gain and low noise figure (NF) dedicated to satellite communications at a frequency of 435 MHz. LNAs’ gain and NF play a significant role in the designs for satellite ground terminals seeking high amplification and maintaining a high signal-to-noise ratio (SNR). The proposed design utilized the transistor (BFP840ESD) to achieve a low NF of 0.459 dB and a high-power gain of 26.149 dB. The study carries out the LNA design procedure, from biasing the transistor, testing its stability at the operation frequency, and finally terminating the appropriate matching networks. In addition to the achieved high gain and low NF, the proposed LNA consumes as low power as only 2 mW.
This paper discusses the design and performance of a frequency reconfigurable antenna for Internet of Things (IoT) applications. The antenna is designed to operate on multiple frequency bands and be reconfigurable to adjust to different communication standards and environmental conditions. The antenna design consists of monopole with one PIN diode and 50Ωfeed line. By changing the states of the diode, the antenna can be reconfigured to operate in a dual-band mode and a wideband mode. The performance of the antenna was evaluated through simulation. The antenna demonstrated good impedance matching, acceptable gain, and stable radiation patterns across the different frequency bands. The antenna has compact dimensions of (26×19×1.6) mm3. It covers the frequency range 2.95 GHz -8.2 GHz, while the coverage of the dual- band mode is (2.7-3.8) GHz and (4.57-7.4) GHz. The peak gain is 1.57 dBi for the wideband mode with omnidirectional radiation pattern. On the other hand, the peak gain of the dual-band mode is 0.87 dBi at 3 GHz and 0.47 dBi at 6 GHz with an omnidirectional radiation pattern too.
This paper presents a comprehensive analysis of a new direct detection polarization shift keying (DD POLSK) receiver structure that is based on Jones matrix technique. The bit - error rate (BER) characteristics of the receiver is examined under system impairments and the results are compared with those related to other DD POLSK receivers reported in the literature. The results indicate that Jones matrix receiver is less sensitive to optical amplifier gain variation when compared with other receivers.
In this paper, a new compact coplanar antenna used for Radio frequency identification (FID) applications is presented. This antenna is operated at the resonant frequency of 2.45 GHz. The proposed antenna is designed on an epoxy substrate material type (FR-4) with small size of (40 × 28) mm2 in which the dielectric thickness (h) of 1.6 mm, relative permittivity (er) of 4.3 and tangent loss of 0.025. In this design the return loss is less than −10 dB in the frequency interval (2.12 − 2.84) GHz and the minimum value of return loss is -32 dB at resonant frequency. The maximum gain of the proposed antenna is 1.22 dB and the maximum directivity obtained is 2.27 dB. The patch and the ground plane of the proposed antenna are in the same surface. The proposed antenna has a wide bandwidth and omnidirectional radiation pattern with small size. The overall size of the compact antenna is (40 × 28 × 1.635) mm3. The Computer Simulation Technology (CST) microwave studio software is used for simulation and gets layout design.
Beam squint phenomenon is considered one of the most drawbacks that limit the use of (mm-waves) array antennas; which causes significant degradation in the BER of the system. In this paper, a uniform linear array (ULA) system is exemplified at millimeter (mm-waves) frequency bands to realize the effects of beam squint phenomena from different directions on an equivalent gain response to represent the channel performance in terms of bit error rate (BER). A simple QPSK passband signal model is developed and tested according to the proposed antenna array with beam squint. The computed results show that increasing the passband bandwidth and the number of antenna elements, have a significant degradation in BER at the receiver when the magnitude and phase errors caused by the beam squint at 26 GHz with various spectrum bandwidths.
This paper proposes a new design of compact coplanar waveguide (CPW) fed -super ultra-wideband (S-UWB) MIMO antenna with a bandwidth of 3.6 to 40 GHz. The proposed antenna is composed of two orthogonal sector-shape monopoles (SSM) antenna elements to perform polarization diversity. In addition, a matched L-shaped common ground element is attached for more efficient coupling. The FR-4 substrate of the structure with a size of 23 × 45 × 1.6 mm3 and a dielectric constant of 4.3 is considered. The proposed design is simulated by using CST Microwave Studio commercial software. The simulation shows that the antenna has low mutual coupling (|S21| < -20 dB) with |S11|<−10 dB, ranging from 3.6 to 40 GHz. Envelope correlation coefficient (ECC) is less than 0.008, diversity gain (DG) is more than 9.99, mean effective gain (MEG) is below - 3 dB and total active reflection coefficient (TARC) is less than -6 dB over the whole response band is reported. The proposed MIMO antenna is expected efficiently cover the broadest range of frequencies for contemporary communications applications.
This article presents a developed intensity modulation/direct detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM). More precisely, the presented C-O-OFDM is based on the C-transform as a unitary orthogonal transform instead of the state-of-the-art discrete Fourier transform (DFT). Due to the properties of the real C-transform, Hermitian symmetry (HS) is not required to produce real OFDM samples. Therefore, the proposed scheme supports twice the input symbols compared to conventional DFT-based OFDM system. Real data mapping and DC bias technology is considered to evaluate the performance of the presented scheme over optical wireless multipath. The simulation results shows that the proposed C-O-OFDM is more resilience to multipath phenomena than the competitive DFT-O-OFDM and DHT-O-OFDM schemes for similar bit rate. The proposed scheme achieves about 22 dB signal-to-noise ratio (SNR) gain in comparison with the DFT-O-OFDM and about 2.5dB SNR gain in comparison with the DHT-O-OFDM scheme.
In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dB i at frequency of 10.7GHz. This is about 2.06dB i enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 50 50mm 2 .
In this paper, three phase induction motor (IM) has been modelled in stationary reference frame and controlled by using direct torque control (DTC) method with constant V/F ratio. The obtained drive system consists of nine nonlinear first order differential equations. The numerical analysis is used to investigate the system behavior due to control parameter change. The integral gain of speed loop is used as bifurcation parameter to test the system dynamics. The simulation results show that the system has period-doubling route to chaos, period-1, period-2, period-4, and then the system gets chaotic oscillation. A specific value of the parameter range shows that the system has very strong randomness and a high degree of disturbance
In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi- elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.
A torsional rotating system is considered for the investigation of passive vibration control using dual loop controllers Proportional-Integral-Derivative (PID) with derivative (D) gain and Proportional – Derivative (PD) with Integral (I) controllers. The controllers are used as low pass filters. Simulation of the models using Matlab-Simulink have been built in this work for torsional vibration control. A comparison between the two controllers with uncontrolled system have been carried out. Results show that the PD – I control is the best method which gives better stability response than the PID – D control.
To gain insight into complex biological endocrine glucose-insulin regulatory system where the interactions of components of the metabolic system and time-delay inherent in the biological system give rise to complex dynamics. The modeling has increased interest and importance in physiological research and enhanced the medical treatment protocols. This brief contains a new model using time delay differential equations, which give an accurate result by utilizing two explicit time delays. The bifurcation analysis has been conducted to find the main system parameters bifurcation values and corresponding system behaviors. The results found consistent with the biological experiments results.
In order to provide an efficient, low cost, and small size radiating structure that passes a certain frequency band with negligible amount of interference, the combination of filters and antennas is proposed to form a single element called filtenna. This paper presents a filtenna element with compact size that can radiates in the 5G mid-band frequency range (3.6-3.8 GHz) and perfectly rejects all the frequencies outside this range. The filtenna is composed of a printed circuit antenna that is terminated with a crescent shaped stub that is coupled electromagnetically with a miniaturized sharp band-pass filter. The simulation results show a filtenna reflection coefficient with a reduced value within the intended 5G band and with high values along the other unwanted frequencies. Moreover, the structure has an omnidirectional pattern with reasonable gain value within the band of interest, and this makes the antenna very suitable for portable 5G devices.
This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.
Nowadays, multimedia communication has become very widespread and this requires it to be protected from attackers and transmitted securely for reliability. Encryption and decryption techniques are useful in providing effective security for speech signals to ensure that these signals are transmitted with secure data and prevent third parties or the public from reading private messages. Due to the rapid improvement in digital communications over the recent period up to the present, the security of voice data transmitted over various networks has been classified as a favored field of study in earlier years. The contributions to audio encryption are discussed in this review. This Comprehensive review mainly focuses on presenting several kinds of methods for audio encryption and decryption the analysis of these methods with their advantages and disadvantages have been investigated thoroughly. It will be classified into encryption based on traditional methods and encryption based on advanced chaotic systems. They are divided into two types, continuous-time system, and discrete-time system, and also classified based on the synchronization method and the implementation method. In the fields of information and communications security, system designers face many challenges in both cost, performance, and architecture design, Field Programmable gate arrays (FPGAs) provide an excellent balance between computational power and processing flexibility. In addition, encryption methods will be classified based on Chaos-based Pseudo Random Bit Generator, Fractional-order systems, and hybrid chaotic generator systems, which is an advantageous point for this review compared with previous ones. Audio algorithms are presented, discussed, and compared, highlighting important advantages and disadvantages. Audio signals have a large volume and a strong correlation between data samples. Therefore, if traditional cryptography systems are used to encrypt such huge data, they gain significant overhead. Standard symmetric encryption systems also have a small key-space, which makes them vulnerable to attacks. On the other hand, encryption by asymmetric algorithms is not ideal due to low processing speed and complexity. Therefore, great importance has been given to using chaotic theory to encode audio files. Therefore, when proposing an appropriate encryption method to ensure a high degree of security, the key space, which is the critical part of every encryption system, and the key sensitivity must be taken into account. The key sensitivity is related to the initial values and control variables of the chaotic system chosen as the audio encryption algorithm. In addition, the proposed algorithm should eliminate the problems of periodic windows, such as limited chaotic range and non-uniform distribution, and the quality of the recovered audio signal remains good, which confirms the convenience, reliability, and high security.
Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.
A theoretical analysis is presented to calculate the signal phase shift and the gain coefficient associated with two-wave mixing in photorefractive crystals subjected to an external electric field. The relative position of the induced-refractive index grating with respect to the fringe pattern of the two input optical beams leads to a coupling effect between the phase and intensity of these beams. An optical logic operation system that is based on photorefractive two-wave mixing is introduced. This system uses the fringe-shifting techniques that are executed by a Mach-Zehnder interferometer. The proposed system configurations are capable of producing all the basic 16 two-operand Boolean functions simultaneously at different output planes.
Since recent societies become more hooked into electricity, a higher level of power supply continuity is required from power systems. The expansion of those systems makes them liable to electrical faults and several failures are raised due to totally different causes, like the lightning strike, power system element failure caused by mechanical aging as well as human mistakes. These conditions impact the stability of the power as well as lead to costly maintenance and loss of output. This article examines the latest technologies and strategies to determine the location of faults in medium voltage distribution systems. The aim is to classify and assess different strategies in order to determine the best recommended models in practice or for further improvement. Several ways to locate failures in distribution networks have therefore been established. Because faults are unpredictable, quick fault location as well as isolating are necessary to reduce the impact of faults in distribution networks as well as removing the emergency condition from the entire system. This study also includes a comprehensive evaluation of several defect location methods depending on the algorithm employed, the input, the test system, the characteristics retrieved, and the degree of complexity. In order to gain further insight into the strengths and limitations of each method and also comparative analysis is carried out. Then the main problems of the fault location methods in distribution network are briefly expounded.
In this paper an integrated electronic system has been designed, constructed and tested. The system utilizes an interface card through the parallel port in addition to some auxiliary circuits to perform fuzzy control operations for DC motor speed control with load and no load. Software is written using (C++ language Ver. 3.1) to display the image as control panel for different types of both conventional and fuzzy control. The main task of the software is to simulate: first, how to find out the correct parameters for fuzzy logic controller (membership’s function, rules and scaling factor). Second, how to evaluate the gain factors (K P , K I and K D ) by Ziegler-Nichols method. When executing any type of control process the efficiency is estimated by drawing the relative speed response for this control.
Early in the 20th century, as a result of technological advancements, the importance of digital marketing significantly increased as the necessity for digital customer experience, promotion, and distribution emerged. Since the year 1988, in the case when the term ”Digital Marketing” first appeared, the business sector has undergone drastic growth, moving from small startups to massive corporations on a global scale. The marketer must navigate a chaotic environment caused by the vast volume of generated data. Decision-makers must contend with the fact that user data is dynamic and changes every day. Smart applications must be used within enterprises to better evaluate, classify, enhance, and target audiences. Customers who are tech-savvy are pushing businesses to make bigger financial investments and use cutting-edge technologies. It was only natural that marketing and trade could be one of the areas to move to such development, which helps to move to the speed of spread, advertisements, along with other things to facilitate things for reaching and winning customers. In this study, we utilized machine learning (ML) algorithms (Decision tree (DT), K-Nearest Neighbor (KNN), CatBoost, and Random Forest (RF) (for classifying data in customers to move to development. Improve the ability to forecast customer behavior so one can gain more business from them more quickly and easily. With the use of the aforementioned dataset, the suggested system was put to the test. The results show that the system can accurately predict if a customer will buy something or not; the random forest (RF) had an accuracy of 0.97, DT had an accuracy of 0. 95, KNN had an accuracy of 0. 91, while the CatBoost algorithm had the execution time 15.04 of seconds, and gave the best result of highest f1 score and accuracy (0.91, 0. 98) respectively. Finally, the study’s future goals involve being created a web page, thereby helping many banking institutions with speed and forecast accuracy. Using more techniques of feature selection in conjunction with the marketing dataset to improve diagnosis.
Use of multilevel inverters is becoming popular in the recent years for high power applications. The important feature of these inverters is of having low harmonics content in the output voltage. The switching angles in a multilevel inverter are computed so as to produce an ac output voltage with minimum harmonics. A new control circuit is designed to achieve these angles. This control circuit has the ability to control the RMS output voltage using sinusoidal pulse width modulation (SPWM). The results presented in this work prove the ability of the designed control circuit to gain the required ac output voltage with minimum distortion.
The relative intensity noise (RIN) characteristics in distributed feedback (DFB) lasers are analyzed theoretically by proposing a new methodology. In addition to temperature variation (T), the effect of other model parameters such as injection current (I inj ), active layer volume (V), spontaneous emission (β sp ) and gain compression (ε) factors on RIN characteristics is investigated. The numerical simulations shows, the peak RIN level can be reduced to around –150 dB/Hz, while relaxation oscillation frequency (ROF) is shifted towards 5.6 GHz. In addition, the RIN level is increased with temperature by the rate of 0.2 dB/ºC and ROF is reduced by the rate of 0.018 GHz/ºC. Results show, the low RIN level can be obtained by selecting model parameters reasonably.
Preserving privacy and security plays a key role in allowing each component in the healthcare system to access control and gain privileges for services and resources. Over recent years, there have been several role-based access control and authentication schemes, but we noticed some drawbacks in target schemes such as failing to resist well-known attacks, leaking privacy-related information, and operational cost. To defeat the weakness, this paper proposes a secure electronic healthcare record scheme based on Schnorr Signcryption, crypto hash function, and Distributed Global Database (DGDB) for the healthcare system. Based on security theories and the Canetti-Krawczyk model (CK), we notice that the proposed scheme has suitable matrices such as scalability, privacy preservation, and mutual authentication. Furthermore, findings from comparisons with comparable schemes reveal that the suggested approach provides greater privacy and security characteristics than the other schemes and has enough efficiency in computational and communicational aspects.
In this study, we propose a compact, tri-band microstrip patch antenna for 5G applications, operating at 28 GHz, 38 GHz, and 60 GHz frequency bands. Starting with a basic rectangular microstrip patch, modifications were made to achieve resonance in the target frequency bands and improve S11 performance, gain, and impedance bandwidth. An inset feed was employed to enhance antenna matching, and a π–shaped slot was incorporated into the radiating patch for better antenna characteristics. The design utilized a Rogers RT/Duroid-5880 substrate with a 0.508 mm thickness, a 2.2 dielectric constant, and a 0.0009 loss tangent. The final dimensions of the antenna are 8 x 8.5 x 0.508 mm3. The maximum S11 values obtained at the resonant frequencies of 27.9 GHz, 38.4 GHz, and 56 GHz are -15.4 dB, -18 dB, and -26.4 dB, respectively. The impedance bandwidths around these frequencies were 1.26 GHz (27.245 - 28.505), 1.08 GHz (37.775 - 38.855), and 12.015 GHz (51.725 - 63.74), respectively. The antenna gains at the resonant frequencies are 7.96 dBi, 6.82 dBi, and 7.93 dBi, respectively. Radiation efficiencies of 88%, 84%, and 90% were achieved at the resonant frequencies. However, it is observed that the radiation is maximum in the broadside direction at 28 GHz, although it peaks at −41o/41o and −30o/30o at 38 GHz and 56 GHz, respectively. Furthermore, the antenna design, simulations, and optimizations were carried out using HFSS, and the results were verified with CST. Both simulators showed a reasonable degree of consistency, confirming the effectiveness and reliability of the proposed antenna design.
Nowadays, renewable energy is being used increasingly because of the global warming and destruction of the environment. Therefore, the studies are concentrating on gain of maximum power from this energy such as the solar energy. A sun tracker is device which rotates a photovoltaic (PV) panel to the sun to get the maximum power. Disturbances which are originated by passing the clouds are one of great challenges in design of the controller in addition to the losses power due to energy consumption in the motors and lifetime limitation of the sun tracker. In this paper, the neuro-fuzzy controller has been designed and implemented using Field Programmable Gate Array (FPGA) board for dual axis sun tracker based on optical sensors to orient the PV panel by two linear actuators. The experimental results reveal that proposed controller is more robust than fuzzy logic controller and proportional- integral (PI) controller since it has been trained offline using Matlab tool box to overcome those disturbances. The proposed controller can track the sun trajectory effectively, where the experimental results reveal that dual axis sun tracker power can collect 50.6% more daily power than fixed angle panel. Whilst one axis sun tracker power can collect 39.4 % more daily power than fixed angle panel. Hence, dual axis sun tracker can collect 8 % more daily power than one axis sun tracker .
Over the previous decade, significant research has been conducted in the field of healthcare services and their technological advancement. To be more precise, the Internet of Things (IoT) has demonstrated potential for connecting numerous medical devices, sensors, and healthcare professionals in order to deliver high-quality medical services in remote locations. This has resulted in an increase in patient safety, a decrease in healthcare expenses, an increase in the healthcare services' accessibility, and an increase in the industry's healthcare operational efficiency. This paper provides an overview of the possible healthcare uses of Internet of Things (IoT)-based technologies. The evolution of the HIoT application has been discussed in this article in terms of enabling technology, services of healthcare, and applications for resolving different healthcare challenges. Additionally, effort difficulties and drawbacks with the HIoT system are explored. In summary, this study provides a complete source of information on the many applications of HIoT together the purpose is to help future academics who are interested in working in the field and making advances gain knowledge into the issue.
The dynamic performance of vertical-cavity surface emitting lasers (VCSEL) diodes can be enhanced by incorporating multiquantum-well (MQW) structure in the active region. This paper addresses the transient response of MQW-VCSEL by solving the laser rate equation in the large-signal regime. The analysis makes use of the energy band structure and optical gain spectrum obtained by applying Schrödinger equation to both conduction and valance bands. Simulation results are presented for $1.3~\mu m$ InGaAs/InP VCSEL and indicate clearly that a MQW laser has higher switching speed compared with bulk laser and this finding is more pronounced with small number of wells.
This paper investigates Load Frequency Control of multi area inter connected power system having different turbines with PID controller. The gain values of controller are optimized using different Metaheuristic Algorithms. The performance and validity of designed controllers were checked on multi area interconnected power system with various Step Load Perturbations. Finally, the performance of proposed controllers was compared with conventional controller and from the result it was proved that the proposed controller exhibits superior performance than conventional controller for various Step Load Perturbations.
In the era of modern trends such as cloud computing, social media applications, emails, mobile applications, and URLs that lead to increased risks for defrauding authorized users, and then the attackers try to gain illegal access to accounts of users through a malicious attack. The phishing attack is one of the dangerous attacks caused to access of authorized account illegally way. The finances, business, banking, and other sensitive in states are faces by this type of attacks due to the important information they have. In this paper, we propose a secure verification scheme that can overcome the above-mentioned issues. Additionally, the proposed scheme can resist famous cyberattacks such as impersonate attacks, MITM attacks. Moreover, the proposed scheme has security features like strong verification, forward secrecy, user’s identity anomaly. The security analysis and the experimental results proved the strongest of the proposed scheme compared with other related works. Finally, our proposed scheme balanced between the performance and the security merits.