Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Mohammed J. Mohammed

Article
Analysis of Permanent Magnet Material Influence on Eddy Current Braking Efficiency

Ahmed M. Salman, Jamal A.-K. Mohammed, Farag M. Mohammed

Pages: 220-225

PDF Full Text
Abstract

Traditional friction brakes can generate problems such as high braking temperature and pressure, cracking, and wear, leading to braking failure and user damage. Eddy current brake systems (contactless magnetic brakes) are one method used in motion applications. They are wear-free, less temperature-sensitive, quick, easy, and less susceptible to wheel lock, resulting in less brake failure due to the absence of physical contact between the magnet and disc. Important factors that can affect the performance of the braking system are the type of materials manufactured for the permanent magnets. This paper examines the performance of the permanent magnetic eddy current braking (PMECB) system. Different kinds of permanent magnets are proposed in this system to create eddy currents, which provide braking for the braking system is simulated using FEA software to demonstrate the efficiency of braking in terms of force production, energy dissipation, and overall performance findings demonstrated that permanent magnets consisting of neodymium, iron, and boron consistently provided the maximum braking effectiveness. The lowest efficiency is found in ferrite, which has the second-lowest efficiency behind samarium cobalt. This is because ferrite has a weaker magnetic field. Because of this, the PMECBS based on NdFeB magnets has higher power dissipation values, particularly at higher speeds.

Article
Authentication Healthcare Scheme in WBAN

Abdullah Mohammed Rashid, Ali A. Yassin, Abdulla J. Y. Aldarwish, Aqeel A. Yaseen, Hamid Alasadi, Ammar Asaad, Alzahraa J. Mohammed

Pages: 118-127

PDF Full Text
Abstract

A wireless body area network (WBAN) connects separate sensors in many places of the human body, such as clothes, under the skin. WBAN can be used in many domains such as health care, sports, and control system. In this paper, a scheme focused on managing a patient’s health care is presented based on building a WBAN that consists of three components, biometric sensors, mobile applications related to the patient, and a remote server. An excellent scheme is proposed for the patient’s device, such as a mobile phone or a smartwatch, which can classify the signal coming from a biometric sensor into two types, normal and abnormal. In an abnormal signal, the device can carry out appropriate activities for the patient without requiring a doctor as a first case. The patient does not respond to the warning message in a critical case sometimes, and the personal device sends an alert to the patient’s family, including his/her location. The proposed scheme can preserve the privacy of the sensitive data of the patient in a protected way and can support several security features such as mutual authentication, key management, anonymous password, and resistance to malicious attacks. These features have been proven depending on the Automated Validation of Internet Security Protocols and Applications. Moreover, the computation and communication costs are efficient compared with other related schemes.

Article
Fuzzy Petri Net Controller for Quadrotor System using Particle Swam Optimization

Mohammed J. Mohammed, Abduladhem A. Ali, Mofeed T. Rashid

Pages: 132-144

PDF Full Text
Abstract

In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.

Article
Secure Multi-keyword Similarity Search Over Encrypted Data With Security Improvement

Hussein M. Mohammed, Ayad I. Abdulsada

Pages: 1-10

PDF Full Text
Abstract

Searchable encryption (SE) is an interesting tool that enables clients to outsource their encrypted data into external cloud servers with unlimited storage and computing power and gives them the ability to search their data without decryption. The current solutions of SE support single-

Article
Design of Dual-Passband Microstrip Filtering Antenna Using Dual-Mode Closed Loop Resonators and Defected Ground Structure

Mohammed K. Alkhafaji, Mohammed Al-Momin

Pages: 162-167

PDF Full Text
Abstract

This paper presents a new microstrip dual-mode closed-loop resonator (DMCLR) that is used to design lower insertion loss and better transmission dual-passband filtering antenna. The dual passband center frequencies of the presented filtering antenna are located at foI=5.52 GHz and foII= 6.65 GHz. The presented dual-mode, dual-passband microstrip filtering antenna results are simulated and optimized by using Computer Simulation Technology (CST) software and defected ground structure technique. Three modes of dual-mode resonators have been utilized to design the dual- passband microstrip filtering antenna and compare their results. The presented dual-mode, dual-passband microstrip filtering antenna is established on FR-4 epoxy dielectric material which has a relative permittivity εr= 4.3 which has height thickness h = 1.6 mm and loss tangent tan δ=0.002. Defected Ground Structure (DGS) technique has been utilized to improve the performance of the presented dual-mode, dual-passband microstrip filtering antenna.

Article
Content-Based Image Retrieval using Hard Voting Ensemble Method of Inception, Xception, and Mobilenet Architectures

Meqdam A. Mohammed, Zakariya A. Oraibi, Mohammed Abdulridha Hussain

Pages: 145-157

PDF Full Text
Abstract

Advancements in internet accessibility and the affordability of digital picture sensors have led to the proliferation of extensive image databases utilized across a multitude of applications. Addressing the semantic gap between low- level attributes and human visual perception has become pivotal in refining Content Based Image Retrieval (CBIR) methodologies, especially within this context. As this field is intensely researched, numerous efficient algorithms for CBIR systems have surfaced, precipitating significant progress in the artificial intelligence field. In this study, we propose employing a hard voting ensemble approach on features derived from three robust deep learning architectures: Inception, Exception, and Mobilenet. This is aimed at bridging the divide between low-level image features and human visual perception. The Euclidean method is adopted to determine the similarity metric between the query image and the features database. The outcome was a noticeable improvement in image retrieval accuracy. We applied our approach to a practical dataset named CBIR 50, which encompasses categories such as mobile phones, cars, cameras, and cats. The effectiveness of our method was thereby validated. Our approach outshone existing CBIR algorithms with superior accuracy (ACC), precision (PREC), recall (REC), and F1-score (F1-S), proving to be a noteworthy addition to the field of CBIR. Our proposed methodology could be potentially extended to various other sectors, including medical imaging and surveillance systems, where image retrieval accuracy is of paramount importance.

Article
Simulation & Performance Study of Wireless Sensor Network (WSN) Using MATLAB

Qutaiba Ibrahem Ali, Akram Abdulmaowjod, Hussein Mahmood Mohammed

Pages: 112-119

PDF Full Text
Abstract

A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.

Article
Separate and Combined Effective Coding of Bit Planes of Grayscale Images

Oday Jasim Mohammed Al-Furaiji, Viktar Yurevich Tsviatkou, Baqir Jafar Sadiq

Pages: 128-137

PDF Full Text
Abstract

Currently, an approach involving a coder with a combined structure for compressing images combining several different coders, the system for connecting them to various bit planes, and the control system for these connections have not been studied. Thus, there is a need to develop a structure and study the effectiveness of a combined codec for compressing images of various types without loss in the spatial domain based on arithmetic and (Run-Length Encoding) RLE-coding algorithms. The essence of separate effective coding is to use independent coders of the same type or one coder connected to the planes alternately in order to compress the higher and lower bit planes of the image or their combinations. In this paper, the results of studying the effectiveness of using a combination of arithmetic and RLE coding for several types of images are presented. As a result of developing this structure, the effectiveness of combined coding for compressing the differences in the channels of hyperspectral images (HSI) has been established, as hyperspectral images consist of multi-spectral bands, instead of just the typical three bands (RGB) or (YCbCr) found in regular images. Where, each pixel in a hyperspectral image represents the entire spectrum of light reflected by the object or scene at that particular location.

Article
WSNs and IoT Their Challenges and applications for Healthcare and Agriculture: A Survey

Mohammed Mehdi Saleh

Pages: 37-43

PDF Full Text
Abstract

Nowadays, the Wireless Sensor Network (WSN) has materialized its working areas, including environmental engineering, agriculture sector, industrial, business applications, military, intelligent buildings, etc. Sensor networks emerge as an attractive technology with great promise for the future. Indeed, issues remain to be resolved in the areas of coverage and deployment, scalability, service quality, size, energy consumption and security. The purpose of this paper is to present the integration of WSNs for IoT networks with the intention of exchanging information, applying security and configuration. These aspects are the challenges of network construction in which authentication, confidentiality, availability, integrity, network development. This review sheds some light on the potential integration challenges imposed by the integration of WSNs for IoT, which are reflected in the difference in traffic features.

Article
Autonomous Navigation of Mobile Robot Based on Flood Fill Algorithm

Ayad Mohammed Jabbar

Pages: 79-84

PDF Full Text
Abstract

The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.

Article
CONDENSER AND DEAERATOR CONTROL USING FUZZY-NEURAL TECHNIQUE

Prof. Dr. Abduladhem A. Ali, A'ayad Sh. Mohammed

Pages: 79-96

PDF Full Text
Abstract

A model reference adaptive control of condenser and deaerator of steam power plant is presented. A fuzzy-neural identification is constructed as an integral part of the fuzzy-neural controller. Both forward and inverse identification is presented. In the controller implementation, the indirect controller with propagating the error through the fuzzy-neural identifier based on Back Propagating Through Time (BPTT) learning algorithm as well as inverse control structure are proposed. Simulation results are achieved using Multi Input-Multi output (MIMO) type of fuzzy-neural network. Robustness of the plant is detected by including several tests and observations.

Article
Server Side Method to Detect and Prevent Stored XSS Attack

Iman F. Khazal, Mohammed A. Hussain

Pages: 58-65

PDF Full Text
Abstract

Cross-Site Scripting (XSS) is one of the most common and dangerous attacks. The user is the target of an XSS attack, but the attacker gains access to the user by exploiting an XSS vulnerability in a web application as Bridge. There are three types of XSS attacks: Reflected, Stored, and Dom-based. This paper focuses on the Stored-XSS attack, which is the most dangerous of the three. In Stored-XSS, the attacker injects a malicious script into the web application and saves it in the website repository. The proposed method in this paper has been suggested to detect and prevent the Stored-XSS. The prevent Stored-XSS Server (PSS) was proposed as a server to test and sanitize the input to web applications before saving it in the database. Any user input must be checked to see if it contains a malicious script, and if so, the input must be sanitized and saved in the database instead of the harmful input. The PSS is tested using a vulnerable open-source web application and succeeds in detection by determining the harmful script within the input and prevent the attack by sterilized the input with an average time of 0.3 seconds.

Article
Mathematical Driving Model of Three Phase, Two Level Inverter by (Method of Interconnected Subsystem)

Mohammed .H. Ali

Pages: 73-82

PDF Full Text
Abstract

In this paper describe to mathematical analysis for a three-phase, two level inverter designs. As we know the power electronic devices (inverter) to convert the DC power to AC power (controller on output voltage and frequency level). In Industrial applications, the inverters are used for adjustable speed (AC Drives). In this paper, the mathematical analyses for inverter design are done by using Software packages C++ Builder and visual C++ Language. For non- linear distortions described by the load power factor in power system networks. The P.F is reverse proportional with the harmonics distortion. Small P.F means much more of harmonic distortion, and lower power quality for consumers. to improve the P.F, and power quality in this paper the small capacitor installed as part of the rectified the load current has power (30 KW with P.F load 0.8), the fluctuations of the rectified voltage must not greater than +/- 10%.The power factor proportion of the load power, with Modulation coefficient p.u approximately unity. The calculation is achieved with different integrations steps with load power 30KW, 0.8 P.F. all results done Based on model and experimental data..

Article
Adaptive Noise Cancellation for speech Employing Fuzzy and Neural Network

Mohammed Hussein Miry, Ali Hussein Miry, Hussain Kareem Khleaf

Pages: 94-101

PDF Full Text
Abstract

Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications such as noise cancellation. Noise cancellation is a common occurrence in today telecommunication systems. The LMS algorithm which is one of the most efficient criteria for determining the values of the adaptive noise cancellation coefficients are very important in communication systems, but the LMS adaptive noise cancellation suffers response degrades and slow convergence rate under low Signal-to- Noise ratio (SNR) condition. This paper presents an adaptive noise canceller algorithm based fuzzy and neural network. The major advantage of the proposed system is its ease of implementation and fast convergence. The proposed algorithm is applied to noise canceling problem of long distance communication channel. The simulation results showed that the proposed model is effectiveness.

Article
Encrypted Vehicular Communication Using Wireless Controller Area Network

Mohammed Al-Qaraghuli, Saadaldeen Rashid Ahmed Ahmed, Muhammad Ilyas

Pages: 17-24

PDF Full Text
Abstract

In this paper, we focus on ensuring encrypted vehicular communication using wireless controller area network performance at high node densities, by means of Dedicated Short-Range Communication (DSRC) algorithms. We analyses the effect of the vehicular communication parameters, message-rate, data-rate, transmission power and carrier sensing threshold, on the application performance. After a state-of-the-art analysis, we propose a data-rate DSRC algorithm. Simulation studies show that DSRC performs better than other decentralized vehicular communication algorithms for a wide range of application requirements and densities. Vehicular communication plays one of the most important roles for future autonomous vehicle. We have systematically investigated the impact of vehicular communication using the MATLAB application platform and achieved an accuracy of 93.74% after encrypting all the communications between the vehicles and securing them by applying the encryption on V2V communication in comparison with the existing system of Sensor Networks which stands at 92.97%. The transmission time for the encryption is 165 seconds while the rate of encryption is as low as 120 Mbps for the proposed awareness range of vehicles to vehicle using DSRC algorithm in Wireless-Controller Area Network for communication. Experimental results show that our proposed method performs 3% better than the recently developed algorithms.

Article
Taguchi Method Based Node Performance Analysis of Generous TIT- for-TAT Cooperation of AD-HOC Networks

Noor Kareem Jumaa, Auday A.H. Mohamad, Abbas Muhammed Allawy, Ali A. Mohammed

Pages: 33-44

PDF Full Text
Abstract

Ad-Hoc networks have an adaptive architecture, temporarily configured to provide communication between wireless devices that provide network nodes. Forwarding packets from the source node to the remote destination node may require intermediate cooperative nodes (relay nodes), which may act selfishly because they are power-constrained. The nodes should exhibit cooperation even when faced with occasional selfish or non-cooperative behaviour from other nodes. Several factors affect the behaviour of nodes; those factors are the number of packets required to redirect, power consumption per node, and power constraints per node. Power constraints per node and grade of generosity. This article is based on a dynamic collaboration strategy, specifically the Generous Tit-for-Tat (GTFT), and it aims to represent an Ad-Hoc network operating with the Generous Tit-for-Tat (GTFT) cooperation strategy, measure statistics for the data, and then analyze these statistics using the Taguchi method. The transfer speed and relay node performance both have an impact on the factors that shape the network conditions and are subject to analysis using the Taguchi Method (TM). The analyzed parameters are node throughput, the amount of relay requested packets produced by a node per number of relays requested packets taken by a node, and the amount of accepted relay requested by a node per amount of relay requested by a node. A Taguchi L9 orthogonal array was used to analyze node behaviour, and the results show that the effect parameters were number of packets, power consumption, power constraint of the node, and grade of generosity. The tested parameters influence node cooperation in the following sequence: number of packets required to redirect (N) (effects on behaviour with a percent of 6.8491), power consumption per node (C) (effects on behaviour with a percent of 0.7467), power constraints per node (P) (effects on behaviour with a percent of 0.6831), and grade of generosity (ε) (effects on behaviour with a percent of 0.4530). Taguchi experiments proved that the grade of generosity (GoG) is not the influencing factor where the highest productivity level is, while the number of packets per second required to redirect also has an impact on node behaviour.

Article
License Plate Detection and Recognition in Unconstrained Environment Using Deep Learning

Heba Hakim, Zaineb Alhakeem, Hanadi Al-Musawi, Mohammed A. Al-Ibadi, Alaa Al-Ibadi

Pages: 210-220

PDF Full Text
Abstract

Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.

Article
Second-Order Statistical Methods GLCM for Authentication Systems

Mohammed A. Taha, Hanaa M. Ahmed

Pages: 88-93

PDF Full Text
Abstract

For many uses, biometric systems have gained considerable attention. Iris identification was One of the most powerful sophisticated biometrical techniques for effective and confident authentication. The current iris identification system offers accurate and reliable results based on near-infrared light (NIR) images when images are taken in a restricted area with fixed- distance user cooperation. However, for the color eye images obtained under visible wavelength (VW) without collaboration among the users, the efficiency of iris recognition degrades because of noise such as eye blurring images, eye lashing, occlusion, and reflection. This work aims to use the Gray-Level Co-occurrence Matrix (GLCM) to retrieve the iris's characteristics in both NIR iris images and visible spectrum. GLCM is second-order Statistical-Based Methods for Texture Analysis. The GLCM- based extraction technology was applied after the preprocessing method to extract the pure iris region's characteristics. The Energy, Entropy, Correlation, Homogeneity, and Contrast collection of second-order statistical features are determined from the generated co-occurrence matrix, Stored as a vector for numerical features. This approach is used and evaluated on the CASIA v1and ITTD v1 databases as NIR iris image and UBIRIS v1 as a color image. The results showed a high accuracy rate (99.2 %) on CASIA v1, (99.4) on ITTD v1, and (87%) on UBIRIS v1 evaluated by comparing to the other methods.

Article
Identification and Control of Impressed Current Cathodic Protection System

Bassim N. Abdul Sada, Ramzy S. Ali, Khearia A. Mohammed Ali

Pages: 214-220

PDF Full Text
Abstract

In this paper the identification and control for the impressed current cathodic protection (ICCP) system are present. Firstly, an identification model using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) was implemented. The identification model consists of four inputs which are the aeration flow rates, the temperature, conductivity, and protection current, and one output that represented by the structure-to-electrolyte potential. The used data taken from an experimental CP system model, type impressed current submerged sample pipe carbon steel. Secondly, two control techniques are used. The first control technique use a conventional Proportional-Integral-Derivative (PID) controller, while the second is the fuzzy controller. The PID controller can be applied to control ICCP system and quite easy to implement. But, it required very fine tuning of its parameters based on the desired value. Furthermore, it needed time response more than fuzzy controller to track reference voltage. So the fuzzy controller has a faster and better response.

Article
Design and Implementation of a Fuzzy Controller for Small Rotation Angles

Mohammed Mahmood Hussein

Pages: 14-18

PDF Full Text
Abstract

This paper present an adaptation mechanism for fuzzy logic controller FLC in order to perfect the response performance against small rotation angles of real D.C. motor with unknown parameters. A supervisor fuzzy controller SFC is designed to continuously adjust, on-line, the universe of discourse UOD of the basic fuzzy controller BFC input variables based on position error and change of position error. Performance of the proposed adaptive fuzzy controller is compared with corresponding conventional FLC in terms of several performance measures such rise time, settling time, peak overshoot, and steady state error. The system design and implementation are carried out using LabVIEW 2009 with NI PCI-6251 data acquisition DAQ card. The practical results demonstrate using self tuning FLC scheme grant a better performance as compared with conventional FLC which is incapable of rotating a motor if the rotation angle is being small.

Article
Improving the Dynamic Response of Half-Car Model using Modified PID Controller

Mustafa Mohammed Matrood, Ameen Ahmed Nassar

Pages: 54-61

PDF Full Text
Abstract

This paper focuses on the vibration suppression of a half-car model by using a modified PID controller. Mostly, car vibrations could result from some road disturbances, such as bumps or potholes transmitted to a car body. The proposed controller consists of three main components as in the case of the conventional PID controller which are (Proportional, Integral, and Derivative) but the difference is in the positions of these components in the control loop system. Initially, a linear half-car suspension system is modeled in two forms passive and active, the activation process occurred using a controlled hydraulic actuator. Thereafter, the two systems have been simulated using MATLAB/Simulink software in order to demonstrate the dynamic response. A comparison between conventional and modified PID controllers has been carried out. The resulting dynamic response of the half-car model obtained from the simulation process was improved when using a modified PID controller compared with the conventional PID controller. Moreover, the efficiency and performance of the half-car model suspension have been significantly enhanced by using the proposed controller. Thus, achieving high vehicle stability and ride comfort.

Article
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review

Mohammed Najm Abdulredha, Bara'a A. Attea, Adnan Jumaa Jabir

Pages: 103-112

PDF Full Text
Abstract

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In this article, a summary of heuristic and meta-heuristic methods for solving the task scheduling optimization in cloud-fog systems is presented. The cost and time aware scheduling methods for both bag of tasks and workflow tasks are reviewed, discussed, and analyzed thoroughly to provide a clear vision for the readers in order to select the proper methods which fulfill their needs.

Article
Digital Marketing Data Classification by Using Machine Learning Algorithms

Noor Saud Abd, Oqbah Salim Atiyah, Mohammed Taher Ahmed, Ali Bakhit

Pages: 245-256

PDF Full Text
Abstract

Early in the 20th century, as a result of technological advancements, the importance of digital marketing significantly increased as the necessity for digital customer experience, promotion, and distribution emerged. Since the year 1988, in the case when the term ”Digital Marketing” first appeared, the business sector has undergone drastic growth, moving from small startups to massive corporations on a global scale. The marketer must navigate a chaotic environment caused by the vast volume of generated data. Decision-makers must contend with the fact that user data is dynamic and changes every day. Smart applications must be used within enterprises to better evaluate, classify, enhance, and target audiences. Customers who are tech-savvy are pushing businesses to make bigger financial investments and use cutting-edge technologies. It was only natural that marketing and trade could be one of the areas to move to such development, which helps to move to the speed of spread, advertisements, along with other things to facilitate things for reaching and winning customers. In this study, we utilized machine learning (ML) algorithms (Decision tree (DT), K-Nearest Neighbor (KNN), CatBoost, and Random Forest (RF) (for classifying data in customers to move to development. Improve the ability to forecast customer behavior so one can gain more business from them more quickly and easily. With the use of the aforementioned dataset, the suggested system was put to the test. The results show that the system can accurately predict if a customer will buy something or not; the random forest (RF) had an accuracy of 0.97, DT had an accuracy of 0. 95, KNN had an accuracy of 0. 91, while the CatBoost algorithm had the execution time 15.04 of seconds, and gave the best result of highest f1 score and accuracy (0.91, 0. 98) respectively. Finally, the study’s future goals involve being created a web page, thereby helping many banking institutions with speed and forecast accuracy. Using more techniques of feature selection in conjunction with the marketing dataset to improve diagnosis.

Article
Design and Develop an Information system for Court Data in the Republic of Iraq by using SSRS Reports with SSAS Cubes

Ayad Mohammed Jabbar

Pages: 105-109

PDF Full Text
Abstract

Multidimensional Online analytical processing (MOLAP) technology is considered a good tool to produce meaningful and quality results by using a multidimensional cube. The term “multidimensional cube” is used to refer to the multiple layers of data that are used to show the result. This result is identified by high-level management to increase the Iraqi court work and to improve its quality. The Iraqi court needs an analytical report to make a strategic decision on case date, case type, case state, judge, criminal age, and criminal gender. Currently, MOLAP is known as the best and strongest technique because it provides rapid, dynamic, and multiple analyses of data; presents knowledge from different perspectives; comes up with data in time series intervals; and drills down into multiple levels of data layers to present different types of details. The SQL Server Reporting Service (SSRS) presents analysis reports based on the MOLAP cube. This paper focuses on designing and developing the analysis reports of the court data system of the Republic of Iraq by using SSRS with SQL Server Analysis Service to create the MOLAP cubes.

Article
Enhanced Bundle-based Particle Collision Algorithm for Adaptive Resource Optimization Allocation in OFDMA Systems

Haider M. AlSabbagh, Mohammed Khalid Ibrahim

Pages: 21-32

PDF Full Text
Abstract

The necessity for an efficient algorithm for resource allocation is highly urgent because of increased demand for utilizing the available spectrum of the wireless communication systems. This paper proposes an Enhanced Bundle-based Particle Collision Algorithm (EB-PCA) to get the optimal or near optimal values. It applied to the Orthogonal Frequency Division Multiple Access (OFDMA) to evaluate allocations for the power and subcarrier. The analyses take into consideration the power, subcarrier allocations constrain, channel and noise distributions, as well as the distance between user's equipment and the base station. Four main cases are simulated and analyzed under specific operation scenarios to meet the standard specifications of different advanced communication systems. The sum rate results are compared to that achieved with employing another exist algorithm, Bat Pack Algorithm (BPA). The achieved results show that the proposed EB-PAC for OFDMA system is an efficient algorithm in terms of estimating the optimal or near optimal values for both subcarrier and power allocation.

Article
Local and Global Outlier Detection Algorithms in Unsupervised Approach: A Review

Ayad Mohammed Jabbar

Pages: 76-87

PDF Full Text
Abstract

The problem of outlier detection is one of the most important issues in the field of analysis due to its applicability in several famous problem domains, including intrusion detection, security, banks, fraud detection, and discovery of criminal activities in electronic commerce. Anomaly detection comprises two main approaches: supervised and unsupervised approach. The supervised approach requires pre-defined information, which is defined as the type of outliers, and is difficult to be defined in some applications. Meanwhile, the second approach determines the outliers without human interaction. A review of the unsupervised approach, which shows the main advantages and the limitations considering the studies performed in the supervised approach, is introduced in this paper. This study indicated that the unsupervised approach suffers from determining local and global outlier objects simultaneously as the main problem related to algorithm parameterization. Moreover, most algorithms do not rank or identify the degree of being an outlier or normal objects and required different parameter settings by the research. Examples of such parameters are the radius of neighborhood, number of neighbors within the radius, and number of clusters. A comprehensive and structured overview of a large set of interesting outlier algorithms, which emphasized the outlier detection limitation in the unsupervised approach, can be used as a guideline for researchers who are interested in this field.

Article
Sliding Mode Control-Based Chaos Stabilization in PM DC Motor Drive

Mohammed Abbas Abdullah, Fadhil Rahma Tahir, Khalid M. Abdul-Hassan

Pages: 198-206

PDF Full Text
Abstract

In this paper, a model of PM DC Motor Drive is presented. The nonlinear dynamics of PM DC Motor Drive is discussed. The drive system shows different dynamical behaviors; periodic, quasi-period, and chaotic and are characterized by bifurcation diagrams, time series evolution, and phase portrait. The stabilization of chaos to a fixed point is adopted using slide mode controller (SMC). The chaotic dynamics are suppressed and the fixed point dynamics are observed after the activation of proposed controller. Numerical simulation results show the effectiveness of the proposed method of control for stabilization the chaos and different disturbances in the system.

Article
A k-Nearest Neighbor Based Algorithm for Human Arm Movements Recognition Using EMG Signals

Mohammed Z. Al-Faiz, MIEEE, Abduladhem A.Ali, Abbas H. Miry

Pages: 158-166

PDF Full Text
Abstract

In a human-robot interface, the prediction of motion, which is based on context information of a task, has the potential to improve the robustness and reliability of motion classification to control human-assisting manipulators. The objective of this work is to achieve better classification with multiple parameters using K-Nearest Neighbor (K-NN) for different movements of a prosthetic arm. The proposed structure is simulated using MATLAB Ver. R2009a, and satisfied results are obtained by comparing with the conventional recognition method using Artificial Neural Network (ANN). Results show the proposed K-NN technique achieved a uniformly good performance with respect to ANN in terms of time, which is important in recognition systems, and better accuracy in recognition when applied to lower Signal-to-Noise Ratio (SNR) signals.

Article
Using Pearson Correlation and Mutual Information (PC-MI) to Select Features for Accurate Breast Cancer Diagnosis Based on a Soft Voting Classifier

Mohammed S. Hashim, Ali A. Yassin

Pages: 43-53

PDF Full Text
Abstract

Breast cancer is one of the most critical diseases suffered by many people around the world, making it the most common medical risk they will face. This disease is considered the leading cause of death around the world, and early detection is difficult. In the field of healthcare, where early diagnosis based on machine learning (ML) helps save patients’ lives from the risks of diseases, better-performing diagnostic procedures are crucial. ML models have been used to improve the effectiveness of early diagnosis. In this paper, we proposed a new feature selection method that combines two filter methods, Pearson correlation and mutual information (PC-MI), to analyse the correlation amongst features and then select important features before passing them to a classification model. Our method is capable of early breast cancer prediction and depends on a soft voting classifier that combines a certain set of ML models (decision tree, logistic regression and support vector machine) to produce one model that carries the strengths of the models that have been combined, yielding the best prediction accuracy. Our work is evaluated by using the Wisconsin Diagnostic Breast Cancer datasets. The proposed methodology outperforms previous work, achieving 99.3% accuracy, an F1 score of 0.9922, a recall of 0.9846, a precision of 1 and an AUC of 0.9923. Furthermore, the accuracy of 10-fold cross-validation is 98.2%.

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

Article
Face Recognition-Based Automatic Attendance System in a Smart Classroom

Ahmad S. Lateef, Mohammed Y. Kamil

Pages: 37-47

PDF Full Text
Abstract

The smart classroom is a fully automated classroom where repetitive tasks, including attendance registration, are automatically performed. Due to recent advances in artificial intelligence, traditional attendance registration methods have become challenging. These methods require significant time and effort to complete the process. Therefore, researchers have sought alternative ways to accomplish attendance registration. These methods include identification cards, radio frequency, or biometric systems. However, all of these methods have faced challenges in safety, accuracy, effort, time, and cost. The development of digital image processing techniques, specifically face recognition technology, has enabled automated attendance registration. Face recognition technology is considered the most suitable for this process due to its ability to recognize multiple faces simultaneously. This study developed an integrated attendance registration system based on the YOLOv7 algorithm, which extracts features and recognizes students’ faces using a specially collected database of 31 students from Mustansiriyah University. A comparative study was conducted by applying the YOLOv7 algorithm, a machine learning algorithm, and a combined machine learning and deep learning algorithm. The proposed method achieved an accuracy of up to 100%. A comparison with previous studies demonstrated that the proposed method is promising and reliable for automating attendance registration.

Article
Modeling and Control of Impressed Current Cathodic Protection (ICCP) System

Marwah S.Hashim, R. Nawal Jasim Hamadi, Khearia A.Mohammed A.

Pages: 80-88

PDF Full Text
Abstract

The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP).CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID) controller and the second are intelligent controllers (fuzzy and neural controllers).The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.

Article
Advanced Neural Network-Based Load Frequency Regulation in Two-Area Power Systems

Mohammed Taha Yunis, Mohamed DJEMEL

Pages: 145-155

PDF Full Text
Abstract

In this paper, enhancing dynamic performance in power systems through load frequency control (LFC) is explored across diverse operating scenarios. A new Neural Network Model Predictive Controller (NN-MPC) specifically tailored for two-zone load frequency power systems is presented. ” Make your paper more scientific. The NN-MPC marries the predictive accuracy of neural networks with the robust capabilities of model predictive control, employing the nonlinear Levenberg-Marquardt method for optimization. Utilizing local area error deviation as feedback, the proposed controller’s efficacy is tested against a spectrum of operational conditions and systemic variations. Comparative simulations with a Fuzzy Logic Controller (FLC) reveal the proposed NN-MPC’s superior performance, underscoring its potential as a formidable solution in power system regulation.

Article
IoT Based Gas Leakage Detection and Alarming System using Blynk platforms

Noor Kareem Jumaa, Younus Mohammed Abdulkhaleq, Muntadher Asaad Nadhim, Tariq Aziz Abbas

Pages: 64-70

PDF Full Text
Abstract

Gas or liquefied petroleum gas (LPG) is a chemical substance resultant from petroleum and could be dangerous in industrial places or those that deal with this substance. Gas leakage causes many health issues. So, to prevent such catastrophes and in order to maintain a clean air environment, the workspace atmosphere should be frequently monitored and controlled. The proposed monitoring gas leakage detector system is based on Internet of Things (IoT) technology. NodeMCU ESP8266 Wi-Fi is used to be the microcontroller for the whole system. The combustible gas sensor (MQ2) is used in order to detect the presence of methane (CH4) and carbon monoxide gas (CO). MQ2 sensor will detect the concentration of the gas according to the voltage output of the sensor and the ESP8266 will send the data reading from the gas sensor to Blynk IoT platform over an IOS phone; data visualization is done using Thingspeak IoT Platform. Besides, a fan will immediately work upon the leakage occurs along with an alarming buzzer.

Article
Encoding JSON by using Base64

Mohammed Thakir Shaamood

Pages: 29-37

PDF Full Text
Abstract

Transmitting binary data across a network should generally avoid transmitting raw binary data over the medium for several reasons, one would be that the medium may be a textual one and may not accept or correctly handle raw bitstream, another would be that some protocols may misinterpret the meaning of the bits and causes a problem or even loss of the data. To make the data more readable and would avoid misinterpretation by different systems and environments, this paper introduces encoding two of the most broadly used data interchange formats, XML and JSON, into the Base64 which is an encoding scheme that converts binary data to an ASCII string format by using a radix-64 representation. This process, will, make the data more readable and would avoid misinterpretation by different systems and environments. The results reflect that encoding data in Base64 before the transmission will present many advantages including readability and integrity, it will also enable us to transmit binary data over textual mediums, 7 Bit protocols such as SMTP, and different network hardware without risking misinterpretation.

Article
A New Hardware Architecture for Fuzzy Logic System Acceleration

Aumalhuda Gani Abood, Mohammed A. Jodha, Majid A. Alwan

Pages: 188-197

PDF Full Text
Abstract

In this work, a new architecture is designed for fuzzy logic system. The proposed architecture is implemented on field programed gate array (FPGA). The hardware designed fuzzy systemimproves the excution speed with very high speed up factor using low cost availble kits such as FPGA. The implementation of the proposed architecture uses very low amount of logic elements and logic array blocks as proven when implementing the proposed architucture on FPGA.

Article
LabVIEW FPGA Implementation Of a PID Controller For D.C. Motor Speed Control

Fakhrulddin H. Ali, Mohammed Mahmood Hussein, Sinan M.B. Ismael

Pages: 139-144

PDF Full Text
Abstract

This Paper presents a novel hardware design methodology of digital control systems. For this, instead of synthesizing the control system using Very high speed integration circuit Hardware Description Language (VHDL), LabVIEW FPGA module from National Instrument (NI) is used to design the whole system that include analog capture circuit to take out the analog signals (set point and process variable) from the real world, PID controller module, and PWM signal generator module to drive the motor. The physical implementation of the digital system is based on Spartan-3E FPGA from Xilinx. Simulation studies of speed control of a D.C. motor are conducted and the effect of a sudden change in reference speed and load are also included.

Article
An Effective Approach to Detect and Prevent ARP Spoofing Attacks on WLAN

Hiba Imad Nasser, Mohammed Abdulridha Hussain

Pages: 8-17

PDF Full Text
Abstract

Address Resolution Protocol (ARP) is used to resolve a host’s MAC address, given its IP address. ARP is stateless, as there is no authentication when exchanging a MAC address between the hosts. Hacking tactics using ARP spoofing are constantly being abused differently; many previous studies have prevented such attacks. However, prevention requires modification of the underlying network protocol or additional expensive equipment, so applying these methods to the existing network can be challenging. In this paper, we examine the limitations of previous research in preventing ARP spoofing. In addition, we propose a defence mechanism that does not require network protocol changes or expensive equipment. Before sending or receiving a packet to or from any device on the network, our method checks the MAC and IP addresses to ensure they are correct. It protects users from ARP spoofing. The findings demonstrate that the proposed method is secure, efficient, and very efficient against various threat scenarios. It also makes authentication safe and easy and ensures data and users’ privacy, integrity, and anonymity through strong encryption techniques.

Article
Emotion Recognition Based on Mining Sub-Graphs of Facial Components

Suhaila N. Mohammed, Alia K. Abdul Hassan

Pages: 39-48

PDF Full Text
Abstract

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.

Article
Tri-Band Rectangular Microstrip Patch Antenna with Enhanced Performance for 5G Applications Using a π-Shaped Slot: Design and Simulation

AbdulGuddoos S. A. Gaid, Mohammed A. M. Ali

Pages: 179-190

PDF Full Text
Abstract

In this study, we propose a compact, tri-band microstrip patch antenna for 5G applications, operating at 28 GHz, 38 GHz, and 60 GHz frequency bands. Starting with a basic rectangular microstrip patch, modifications were made to achieve resonance in the target frequency bands and improve S11 performance, gain, and impedance bandwidth. An inset feed was employed to enhance antenna matching, and a π–shaped slot was incorporated into the radiating patch for better antenna characteristics. The design utilized a Rogers RT/Duroid-5880 substrate with a 0.508 mm thickness, a 2.2 dielectric constant, and a 0.0009 loss tangent. The final dimensions of the antenna are 8 x 8.5 x 0.508 mm3. The maximum S11 values obtained at the resonant frequencies of 27.9 GHz, 38.4 GHz, and 56 GHz are -15.4 dB, -18 dB, and -26.4 dB, respectively. The impedance bandwidths around these frequencies were 1.26 GHz (27.245 - 28.505), 1.08 GHz (37.775 - 38.855), and 12.015 GHz (51.725 - 63.74), respectively. The antenna gains at the resonant frequencies are 7.96 dBi, 6.82 dBi, and 7.93 dBi, respectively. Radiation efficiencies of 88%, 84%, and 90% were achieved at the resonant frequencies. However, it is observed that the radiation is maximum in the broadside direction at 28 GHz, although it peaks at −41o/41o and −30o/30o at 38 GHz and 56 GHz, respectively. Furthermore, the antenna design, simulations, and optimizations were carried out using HFSS, and the results were verified with CST. Both simulators showed a reasonable degree of consistency, confirming the effectiveness and reliability of the proposed antenna design.

Article
Using Water Energy for Electrical Energy Conservation by Building of Micro hydroelectric Generators on The Water Pipelines That Depend on The Difference in Elevation

Engineer Mohammed Taih Gatte, Engineer Rasim Azeez Kadhim, Engineer Farhan Leftah Rasheed

Pages: 185-189

PDF Full Text
Abstract

In this research we study the elevations of cities and the water resources specially at the dams reservoirs and the distance between them(dams & cities), we use the Google Earth program to determine these elevations and calculate the difference between the average level (elevation) of water at the dam and the average level of cities, which we want to supply it by water, in order to save electrical power by using the energy of supplied water through pipe line from dams to the cities, the pressure of supplied water must be calculated from the difference in elevations(head). The saving of energy can be achieved by two ways. The first is the energy saving by reduce the consumed power in the pumping water from river, which is used for different purposes. The second is the hydroelectric power generated by establishing a micro hydroelectric generator on the pipe line of the water supplied.

Article
Design and Implementation of the Soft Robot’s End-Effecter

Shahad A. Al-Ibadi, Loai A. T. Al-Abeach, Mohammed A. Al-Ibadi

Pages: 44-54

PDF Full Text
Abstract

Soft robotics is a modern technique that allows robots to have more capabilities than conventional rigid robots. Pneumatic Muscle Actuators (PMAs), also known as McKibben actuators, are an example of soft actuators. This research covered the design and production of a pneumatic robot end effector. Smooth, elastic, flexible, and soft qualities materials have contributed to the creation of Soft Robot End-Effector (SREE). To give SREE compliance, it needs to handle delicate objects while allowing it to adapt to its surroundings safely. The research focuses on the variable stiffness SREE’s inspiration design, construction, and manufacturing. As a result, a new four-fingered variable stiffness soft robot end effector was created. SREE has been designed using two types of PMAs: Contractor PMAs (CPMAs) and Extensor PMAs (EPMAs). Through tendons and Contractor PMAs, fingers can close and open. SREE was tested and put into practice to handle various object types. The innovative movement of the suggested SREE allows it to grip with only two fingers and open and close its grasp with all of its fingers.

Article
Enhancing Linear Independent Component Analysis: Comparison of Various Metaheuristic Methods

Nidaa Abdul Mohsin Abbas, Hussein Mohammed Salman

Pages: 113-122

PDF Full Text
Abstract

Various methods have been exploited in the blind source separation problems, especially in cocktail party problems. The most commonly used method is the independent component analysis (ICA). Many linear and nonlinear ICA methods, such as the radial basis functions (RBF) and self-organizing map (SOM) methods utilise neural networks and genetic algorithms as optimisation methods. For the contrast function, most of the traditional methods, especially the neural networks, use the gradient descent as an objective function for the ICA method. Most of these methods trap in local minima and consume numerous computation requirements. Three metaheuristic optimisation methods, namely particle, quantum particle, and glowworm swarm optimisation methods are introduced in this study to enhance the existing ICA methods. The proposed methods exhibit better results in separation than those in the traditional methods according to the following separation quality measurements: signal-to-noise ratio, signal-to-interference ratio, log-likelihood ratio, perceptual evaluation speech quality and computation time. These methods effectively achieved an independent identical distribution condition when the sampling frequency of the signals is 8 kHz.

Article
Modeling and Control of Torsional Vibration in Rotating System Using Dual Loop Controllers

Mustafa Mohammed Matrood, Ameen Ahmed Nassar

Pages: 11-15

PDF Full Text
Abstract

A torsional rotating system is considered for the investigation of passive vibration control using dual loop controllers Proportional-Integral-Derivative (PID) with derivative (D) gain and Proportional – Derivative (PD) with Integral (I) controllers. The controllers are used as low pass filters. Simulation of the models using Matlab-Simulink have been built in this work for torsional vibration control. A comparison between the two controllers with uncontrolled system have been carried out. Results show that the PD – I control is the best method which gives better stability response than the PID – D control.

Article
Novel Optimization Algorithm Inspired by Camel Traveling Behavior

Mohammed Khalid Ibrahim, Ramzy Salim Ali

Pages: 167-177

PDF Full Text
Abstract

This article presents a novel optimization algorithm inspired by camel traveling behavior that called Camel algorithm (CA). Camel is one of the extraordinary animals with many distinguish characters that allow it to withstand the severer desert environment. The Camel algorithm used to find the optimal solution for several different benchmark test functions. The results of CA and the results of GA and PSO algorithms are experimentally compared. The results indicate that the promising search ability of camel algorithm is useful, produce good results and outperform the others for different test functions.

Article
Control of Robot Directions Based on Online Hand Gestures

Mohammed A.Tawfeeq, Ayam M. Abbass

Pages: 41-50

PDF Full Text
Abstract

The evolution of wireless communication technology increases human machine interaction capabilities especially in controlling robotic systems. This paper introduces an effective wireless system in controlling the directions of a wheeled robot based on online hand gestures. The hand gesture images are captured and processed to be recognized and classified using neural network (NN). The NN is trained using extracted features to distinguish five different gestures; accordingly it produces five different signals. These signals are transmitted to control the directions of the cited robot. The main contribution of this paper is, the technique used to recognize hand gestures is required only two features, these features can be extracted in very short time using quite easy methodology, and this makes the proposed technique so suitable for online interaction. In this methodology, the preprocessed image is partitioned column-wise into two half segments; from each half one feature is extracted. This feature represents the ratio of white to black pixels of the segment histogram. The NN showed very high accuracy in recognizing all of the proposed gesture classes. The NN output signals are transmitted to the robot microcontroller wirelessly using Bluetooth. Accordingly the microcontroller guides the robot to the desired direction. The overall system showed high performance in controlling the robot movement directions.

Article
Optimized Sliding Mode Control of Three-Phase Four-Switch Inverter BLDC Motor Drive Using LFD Algorithm

Quasy S. Kadhim, Abbas H. Abbas, Mohammed M. Ezzaldean

Pages: 129-139

PDF Full Text
Abstract

This paper presents a low-cost Brushless DC (BLDC) motor drive system with fewer switches. BLDC motors are widely utilized in variable speed drives and industrial applications due to their high efficiency, high power factor, high torque, low maintenance, and ease of control. The proposed control strategy for robust speed control is dependent on two feedback signals which are speed sensor loop which is regulated by Sliding Mode Controller (SMC) and current sensor loop which is regulated by Proportional-Integral (PI) for boosting the drive system adaptability. In this work, the BLDC motor is driven by a four-switch three-phase inverter emulating a three-phase six switch inverter, to reduce switching losses with a low complex control strategy. In order to reach a robust performance of the proposed control strategy, the Lévy Flight Distribution (LFD) technique is used to tune the gains of PI and SMC parameters. The Integral Time Absolute Error (ITAE) is used as a fitness function. The simulation results show the SMC with LFD technique has superiority over conventional SMC and optimization PI controller in terms of fast-tracking to the desired value, reduction speed error to the zero value, and low overshoot under sudden change conditions.

Article
Electrically Coupled Folded Arm Resonators with the Feedline Patch Antenna for Spurious Harmonic Suppression and Bandwidth Improvement

Mohammed Kadhim Alkhafaji

Pages: 33-38

PDF Full Text
Abstract

This paper presents a new design of the filtering antenna with a quasi-elliptic function response. The basic structure of the proposed filtering antenna is consists of a four-folded arms open-loop resonator (OLR). The proposed filtering antenna is simulated, improved and, analyzed by using 3D Computer Simulation Technology (CST) electromagnetic simulator software. The design has good spurious harmonic suppression in the upper and lower stopbands. The Insertion Loss of the proposed filtering antenna IL=0.2 dB and the Return Loss RL= -25.788 dB at the center frequency fo=5.75 GHz. The passband bandwidth which is relatively wide, and equal to 0.793 GHz. The microstrip filtering antenna circuit shows good design results compared to the conventional microstrip patch antenna. The filtering antenna design circuit with etched ground plane structure also has good design results compared to the filtering antenna design which has a complete ground plane structure.

Article
Evaluation of Electric Energy Losses in Kirkuk Distribution Electric System Area

Sameer S. Mustafa ., Mohammed H. Yasen, Hussein H. Abdullah, Hadi K. Hazaa

Pages: 144-150

PDF Full Text
Abstract

Correct calculations of losses are important for several reasons. There are two basic methods that can be used to calculate technical energy losses, a method based on subtraction of metered energy purchased and metered energy sold to customers and a method based on modeling losses in individual components of the system. For considering the technical loss in distribution system included: transmission line losses, power transformer losses, distribution line losses and low-voltage transformer losses. This work presents an evaluation of the power losses in Kirkuk electric distribution system area and submit proposals and appropriate solutions and suggestions to reduce the losses . A program under Visual Basic was designed to calculate and evaluate electrical energy losses in electrical power systems.

Article
Robust Low Pass Filter-PID Controller for 2-DOF Helicopter System

Shatha Abd Al Kareem Mohammed, Ali Hussien Mary

Pages: 36-43

PDF Full Text
Abstract

In this article, a robust control technique for 2-DOF helicopter system is presented. The 2-DOF helicopter system is 2 inputs and 2 outputs system that is suffering from the high nonlinearity and strong coupling. This paper focuses on design a simple, robust, and optimal controller for the helicopter system. Moreover, The proposed control method takes into account effects of the measurement noise in the closed loop system that effect on the performance of controller as well as the external disturbance. The proposed controller combines low pass filter with robust PID controller to ensure good tracking performance with high robustness. A low pass filter and PID controller are designed based H∞weighted mixed sensitivity. Nonlinear dynamic model of 2-DOF helicopter system linearized and then decoupled into pitch and yaw models. Finally, proposed controller applied for each model. Matlab program is used to check effectiveness the proposed control method. Simulation results show that the proposed controllers has best tracking performance with no overshot and the smallest settling time with respect to standard H∞and optimized PID controller.

Article
Performance of Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC)

Ali K. Marzook, Hayder J. Mohammed, Hisham L. Swadi Roomi

Pages: 152-156

PDF Full Text
Abstract

Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.

Article
A Hybrid Lung Cancer Model for Diagnosis and Stage Classification from Computed Tomography Images

Abdalbasit Mohammed Qadir, Peshraw Ahmed Abdalla, Dana Faiq Abd

Pages: 266-274

PDF Full Text
Abstract

Detecting pulmonary cancers at early stages is difficult but crucial for patient survival. Therefore, it is essential to develop an intelligent, autonomous, and accurate lung cancer detection system that shows great reliability compared to previous systems and research. In this study, we have developed an innovative lung cancer detection system known as the Hybrid Lung Cancer Stage Classifier and Diagnosis Model (Hybrid-LCSCDM). This system simplifies the complex task of diagnosing lung cancer by categorizing patients into three classes: normal, benign, and malignant, by analyzing computed tomography (CT) scans using a two-part approach: First, feature extraction is conducted using a pre-trained model called VGG-16 for detecting key features in lung CT scans indicative of cancer. Second, these features are then classified using a machine learning technique called XGBoost, which sorts the scans into three categories. A dataset, IQ-OTH/NCCD - Lung Cancer, is used to train and evaluate the proposed model to show its effectiveness. The dataset consists of the three aforementioned classes containing 1190 images. Our suggested strategy achieved an overall accuracy of 98.54%, while the classification precision among the three classes was 98.63%. Considering the accuracy, recall, and precision as well as the F1-score evaluation metrics, the results indicated that when using solely computed tomography scans, the proposed (Hybrid-LCSCDM) model outperforms all previously published models.

Article
Adaptive OFDMA Resource Allocation using Modified Multi-Dimension Genetic Algorithm

Mohammed Khalid Ibrahim, Haider M. AlSabbagh

Pages: 103-113

PDF Full Text
Abstract

A considerable work has been conducted to cope with orthogonal frequency division multiple access (OFDMA) resource allocation with using different algorithms and methods. However, most of the available studies deal with optimizing the system for one or two parameters with simple practical condition/constraints. This paper presents analyses and simulation of dynamic OFDMA resource allocation implementation with Modified Multi-Dimension Genetic Algorithm (MDGA) which is an extension for the standard algorithm. MDGA models the resource allocation problem to find the optimal or near optimal solution for both subcarrier and power allocation for OFDMA. It takes into account the power and subcarrier constrains, channel and noise distributions, distance between user's equipment (UE) and base stations (BS), user priority weight – to approximate the most effective parameters that encounter in OFDMA systems. In the same time multi dimension genetic algorithm is used to allow exploring the solution space of resource allocation problem effectively with its different evolutionary operators: multi dimension crossover, multi dimension mutation. Four important cases are addressed and analyzed for resource allocation of OFDMA system under specific operation scenarios to meet the standard specifications for different advanced communication systems. The obtained results demonstrate that MDGA is an effective algorithm in finding the optimal or near optimal solution for both of subcarrier and power allocation of OFDMA resource allocation.

Article
Dynamic Model of Linear Induction Motor Considering the End Effects

Dr. Haroutuon A. Hairik, Mohammed H. Hassan

Pages: 38-50

PDF Full Text
Abstract

In this paper the dynamic behavior of linear induction motor is described by a mathematical model taking into account the end effects and the core losses. The need for such a model rises due to the complexity of linear induction motors electromagnetic field theory. The end affects are modeled by introducing a speed dependent scale factor to the magnetizing inductance and series resistance in the d-axis equivalent circuit. Simulation results are presented to show the validity of the model during both no-load and sudden load change intervals. This model can also be used directly in simulation researches for linear induction motor vector control drive systems.

Article
A Survey on Segmentation Techniques for Image Processing

Wala’a N. Jasim, Rana Jassim Mohammed

Pages: 73-93

PDF Full Text
Abstract

The segmentation methods for image processing are studied in the presented work. Image segmentation can be defined as a vital step in digital image processing. Also, it is used in various applications including object co-segmentation, recognition tasks, medical imaging, content based image retrieval, object detection, machine vision and video surveillance. A lot of approaches were created for image segmentation. In addition, the main goal of segmentation is to facilitate and alter the image representation into something which is more important and simply to be analyzed. The approaches of image segmentation are splitting the images into a few parts on the basis of image’s features including texture, color, pixel intensity value and so on. With regard to the presented study, many approaches of image segmentation are reviewed and discussed. The techniques of segmentation might be categorized into six classes: First, thresholding segmentation techniques such as global thresholding (iterative thresholding, minimum error thresholding, otsu's, optimal thresholding, histogram concave analysis and entropy based thresholding), local thresholding (Sauvola’s approach, T.R Singh’s approach, Niblack’s approaches, Bernsen’s approach Bruckstein’s and Yanowitz method and Local Adaptive Automatic Binarization) and dynamic thresholding. Second, edge-based segmentation techniques such as gray-histogram technique, gradient based approach (laplacian of gaussian, differential coefficient approach, canny approach, prewitt approach, Roberts approach and sobel approach). Thirdly, region based segmentation approaches including Region growing techniques (seeded region growing (SRG), statistical region growing, unseeded region growing (UsRG)), also merging and region splitting approaches. Fourthly, clustering approaches, including soft clustering (fuzzy C-means clustering (FCM)) and hard clustering (K-means clustering). Fifth, deep neural network techniques such as convolution neural network, recurrent neural networks (RNNs), encoder-decoder and Auto encoder models and support vector machine. Finally, hybrid techniques such as evolutionary approaches, fuzzy logic and swarm intelligent (PSO and ABC techniques) and discusses the pros and cons of each method.

Article
Nonlinear Physiological Model of Insulin-Glucose Regulation System in Type 1 Diabetes Mellitus

Ahmed Mohammed Ali, Fadhil Rahma Tahir

Pages: 78-88

PDF Full Text
Abstract

Mathematical modeling is very effective method to investigate interaction between insulin and glucose. In this paper, a new mathematical model for insulin-glucose regulation system is introduced based on well-known Lokta-Volterra model. Chaos is a common property in complex biological systems in the previous studies. The results here are in accordance with previous ones and indicating that insulin-glucose regulating system has many dynamics in different situations. The overall result of this paper may be helpful for better understanding of diabetes mellitus regulation system including diseases such as hyperinsulinemia and Type1 DM.

1 - 56 of 56 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.