Cover
Vol. 16 No. 1 (2020)

Published: June 30, 2020

Pages: 113-122

Original Article

Enhancing Linear Independent Component Analysis: Comparison of Various Metaheuristic Methods

Abstract

Various methods have been exploited in the blind source separation problems, especially in cocktail party problems. The most commonly used method is the independent component analysis (ICA). Many linear and nonlinear ICA methods, such as the radial basis functions (RBF) and self-organizing map (SOM) methods utilise neural networks and genetic algorithms as optimisation methods. For the contrast function, most of the traditional methods, especially the neural networks, use the gradient descent as an objective function for the ICA method. Most of these methods trap in local minima and consume numerous computation requirements. Three metaheuristic optimisation methods, namely particle, quantum particle, and glowworm swarm optimisation methods are introduced in this study to enhance the existing ICA methods. The proposed methods exhibit better results in separation than those in the traditional methods according to the following separation quality measurements: signal-to-noise ratio, signal-to-interference ratio, log-likelihood ratio, perceptual evaluation speech quality and computation time. These methods effectively achieved an independent identical distribution condition when the sampling frequency of the signals is 8 kHz.

References

  1. Ondˇrej Sembera, Petr Tichavsky, and Zbynˇek Koldovsky, Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources, Springer International Publishing AG 2017, P. Tichavsk´ y et al. (Eds.): LVA/ICA 2017, LNCS 10169, pp. 172–181, 2017. DOI: 10.1007/978-3-319-53547-0 17.
  2. B. Paprocki, A. Pregowska, and J. Szczepanski, Optimizing information processing in brain-inspired neural networks, BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 68, No. 2, 2020.
  3. A. Hyvarinen, J. Karhunen, and E. Oja, “Independent Component Analysis”, John Wiley & Son Inc., 2001.
  4. A. Cichocki and S. Amari, “Adaptive Blind Signal and Image processing learning algorithms and applications”, John Willy & Sons, 2002.
  5. Ke Zhang, Yangjie Wei, Dan Wu and Yi Wang, Adaptive Speech Separation Based on Beamforming and Frequency Domain-Independent Component Analysis, Appl. Sci. 2020, 10, 2593; doi:10.3390/app10072593
  6. Ali Al-Saegh, Independent Component Analysis for Separation of Speech Mixtures: A Comparison Among Thirty Algorithms, Iraq J. Electrical and Electronic Engineering Vol.11 No.1 , 2015
  7. Y. Deville, “Blind Source Separation and Blind Mixture Identification Methods”, J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, John Wily & Sons Inc., 2016.
  8. Alaa Tharwat, Independent component analysis: An introduction, Applied Computing and Informatics, in press, 2018, https://doi.org/10.1016/j.aci.2018.08.006
  9. F. Rojas, C.G. Puntonet, I.Rojas, J. Ortega and A. Prieto, “Genetic Algorithm Approach to Nonlinear Blind Source Separation “, IEEE-2002.
  10. Liuyang Gao, Nae Zheng , Yinghua Tian, and Jingzhi Zhang, Target Signal Extraction Method Based on Enhanced ICA with Reference, Mathematical Problems in Engineering, Volume 2019, Article ID 4128438, https://doi.org/10.1155/2019/4128438.
  11. C.G. Puntonet, A. Mansourb, C. Bauerc, and E. Langc, “Separation of sources using simulated annealing and competitive learning”, www.elsevier.com/locate/neucom, Neurocomputing 49 (2002) 39 – 60, 2002.
  12. J. Sun, C. Lai and X. Wu, “particle swarm optimization classical and quantum perspectives”, CRC Press, 2012.
  13. B.K. Panigrahi, Y. Shi, and M.-H. Lim (Eds.), "Handbook of Swarm Intelligence", ALO 8, pp. 451–467.Springer-Verlag Berlin Heidelberg 2011.
  14. C. Liu, T. Sun, S. Hsieh, C. Lin, and K. Lee, “A Hybrid Blind Signal Separation Algorithm: Particle Swarm Optimization on Feed-Forward Neural Network”, LNCS 4232, Springer-2006.
  15. K. Song, M. Ding, Q. Wang, and W. Liu, “Blind source separation in post-nonlinear mixtures using natural gradient descent and particle swarm optimization algorithm”, LNCS 4493, Springer-2007.
  16. W. Yu, L. Zhenxing and L. ChangHai, “Improved particle swarm to nonlinear blind source separation”, IEEE, 2007.
  17. T. Kurihara and K. Jin’no, “A Nonlinear blind source separation system using particle swarm optimization algorithm”, Journal of Signal Processing, Japan, 2013.
  18. T. Lee and B. Koehler, “blind source separation of nonlinear mixing models”, IEEE, 1997.
  19. A. Ziehe, M. Kawanabe, S. Harmeling and K. Muller, “Separation of post-nonlinear mixtures using ACE and temporal decorrelation”, Proc. of the international conference on independent component analysis and signal separation (ICA 2001), USA, 2001.
  20. Z. Xiong and T. S. Huang, “Nonlinear independent component analysis (ICA) using power series and application to blind source separation”, 2001.
  21. Y. Tan and J. Wang, “Nonlinear Blind Source Separation Using a Genetic Algorithm”, 2001.
  22. J. Eriksson and V. Koivunen, “Blind identifiability of class of nonlinear instantaneous”, Proc. of XI European signal processing conference (EUSIPCO 2002), France, 2002.
  23. J. Sole, C. Jutten and A. Taleb, “Parametric approach to blind deconvolution of nonlinear channels, Neuro-computing 48 (2002) 339–355, 2002.
  24. L. B. Almeida, “MISEP – Linear and Nonlinear ICA Based on Mutual Information”, Journal of Machine Learning Research 4 (2003) 1297-1318, 2003.
  25. F. Rojas, C. G. Puntonet, M. Rodríguez-Álvarez, I. Rojas and R. Martín-Clemente, " Blind Source Separation In Post-Nonlinear Mixtures Using Competitive Learning, Simulated Annealing, And A Genetic Algorithm”, IEEE Transactions On Systems, Man, And Cybernetics—Part C: Applications And Reviews, Vol. 34, No. 4, 2004.
  26. J. Karvonen and T. Tanaka, “Temporal Decorrelation as Preprocessing for Linear and Post-nonlinear ICA”, Springer, C.G. Puntonet and A. Prieto (Eds.): ICA 2004, LNCS 3195, pp. 774–781, 2004.
  27. T. M. Dias, T. M. Dias, R. Attux, J. M.T. Romano and R.Suyama, “Blind Source Separation Of Post-Nonlinear Mixtures Using Evolutionary Computation And Gaussianization”, Springer, 2009.
  28. F. Oveisi, S. Oveisi, A. Efranian, and I. Patras, “Nonlinear Independent Component Analysis for EEG-Based Brain-Computer Interface Systems”, intechopen.com, 2012.
  29. B. Ehsandoust, M. Babaie-Zadeh, B. Rivet and C. Jutten, “Blind Source Separation in Nonlinear Mixtures: Separability and a Basic Algorithm”, 1053-587X (c) 2016 IEEE, DOI 10.1109/TSP.2017.2708025, IEEE Transactions on Signal Processing, 2016.
  30. J. Kennedy and R. Eberhart,” particle swarm optimization“, Proceedings of the IEEE international conference on neural networks, Perth, Australia, pp. 1942-1948, 1995.
  31. J. Sun, B. Feng and W. Xu, “particle swarm optimization with particles having quantum behavior”, IEEE-2004.
  32. W. Fang, J. Sun, Y. Ding, X. Wu and W. Xu, " A Review of Quantum-behaved Particle Swarm Optimization", IETE Technical Review, 27:4, 336-348, 2010.
  33. Z. Li and X. Huang, "Glowworm Swarm Optimization and Its Application to Blind Signal Separation", Hindawi Publishing Corporation, Mathematical Problems in Engineering, Volume 2016, Article ID 5481602.
  34. Philip Coleman, Qingju Liu, Jon Francombe, and Philip J. B. Jackson, Perceptual Evaluation of Blind Source Separation in Object-Based Audio Production, Springer International Publishing AG, part of Springer Nature 2018, Y. Deville et al. (Eds.): LVA/ICA 2018, LNCS 10891, pp. 558–567, 2018. https://doi.org/10.1007/978-3-319-93764-9_51
  35. Nidaa A. Abbas, Hussein Mohammed Salman, “Independent component analysis based on quantum particle swarm optimization”, Egyptian Informatics Journal, Vol. 19, Issue 2, July 2018, pp. 101-105, Publisher Elsevier.
  36. Nidaa A. Abbas, Jahanshah Kabudian, "Speech Scrambling based on Independent Component Analysis and Particle Swarm Optimization", International Arab Journal of Information Technology (IAJIT), impact factor 0.519, Vol.14, No.4, 2017.
  37. http://www.utdallas.edu/~loizou/speech/noizeus/