Page 180 - 2023-Vol19-Issue2
P. 180

176 |                                                            Al-Jrew, Mahmood & Ali

Fig. 12. Inverter Load Current with Variable Workpiece
Resistance

                                                                 Fig. 14. Load Loop Current and Inverter Output Voltage
                                                                 Waveform Below Resonant Frequency 40 KHz

Fig. 13. Capacitor voltage waveform with variable workpiece       [8] C. Hammouma and H. Zeroug, “Enhanced frequency
resistance                                                             adaptation approaches for series resonant inverter con-
                                                                       trol under workpiece permeability effect for induction
 [3] Y. Wang, Y. Li, Y. Peng, and X. Qi, “Research and                 hardening applications,” Eng. Sci. Technol. an Int. J.,
      design on igbt induction heating power supply,” Energy           vol. 27, pp. 1–13, 2022.
      Procedia, vol. 16, no. PART C, pp. 1957–1963, 2012.
                                                                  [9] P. Omer, J. Kumar, and B. S. Surjan, “A review on re-
 [4] S. Choi, C. Lee, I. Kim, J. H. Jung, and D. H. Seo, “New          duced switch count multilevel inverter topologies,” IEEE
      induction heating power supply for forging applications          Access, vol. 8, pp. 22281–22302, 2020.
      using igbt current-source pwm rectifier and inverter,”
      KIEE Electr. Mach. Energy Convers. Syst., pp. 709–713,     [10] R. K. Kumawat and D. K. Palwalia, “A comprehensive
      2018.                                                            analysis of reduced switch count multilevel inverter,”
                                                                       Aust. J. Electr. Electron. Eng., vol. 17, no. 1, pp. 13–27,
 [5] O. Lucia, J. M. Burdio, I. Millan, J. Acero, and D. Puyal,        2019.
      “Load-adaptive control algorithm of half-bridge series
      resonant inverter for domestic induction heating,” IEEE    [11] B. Nagarajan and R. R. Sathi, “Phase locked loop based
      Trans. Ind. Electron, pp. 3106–3116, 2009.                       pulse density modulation scheme for the power control
                                                                       of induction heating applications,” J. Power Electron.,
 [6] Z. Waradzyn, A. Penczek, and A. Skala, “Analysis of               vol. 15, no. 1, pp. 65–77, 2015.
      the load current harmonics content in a series resonant
      inverter for induction heating controlled using various    [12] A. Cristina and O. A. Pop, “Method for detecting reso-
      cases of the avc control strategy,” in Proc. 2018 Conf.          nance frequency in induction heating systems,” in IEEE
      Electrotechnol. Process. Model. Control Comput. Sci.             25th Int. Symp. Des. Technol. Electron. Packag. IEEE
      EPMCCS 2018, pp. 1–9, 2018.                                      Xplore, October, pp. 295–298, 2019.

 [7] J. Villa, A. Mur, J. I. Artigas, L. A. Barragan, I. Ur-     [13] C. Hammouma, H. Zeroug, and A. Attab, “A new ap-
      riza, and D. Navarro, “Output voltage estimation of a            proach for adaptive frequency in series resonant inverter
      half-bridge inverter for domestic induction heating ap-          for induction hardening,” in 3rd Int. Conf. Electr. Sci.
      plications,” in IECON Proc. (Industrial Electron. Conf.,         Technol. Maghreb, Cist., pp. 1–6, 2018.
      pp. 5081–5086, 2019.
                                                                 [14] S. Oncu and H. Ozbay, “Simulink model of parallel
                                                                       resonant inverter with dsp based pll controller,” Elektron.
                                                                       ir Elektrotechnika, vol. 21, no. 6, pp. 14–17, 2015.

                                                                 [15] M. H. Khazaal, I. M. Abdulbaqi, and R. H. Thejel, “De-
                                                                       sign, simulation and implementation of a self-oscillating
   175   176   177   178   179   180   181   182   183   184   185