Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for real

Article
An Experimental Investigation on VSI-fed Induction Motor using Xilinx ZYNQ-7000 SoC Controller

Santosh Yadav Maddu, Nitin Ramesh Bhasme

Pages: 104-114

PDF Full Text
Abstract

In medium voltage and high-power drive applications, pulse width modulation (PWM) techniques are widely used to achieve effective speed control of AC motors. In real-time, an industrial drive system requires reduced hardware complexity and low computation time. The reliability of the AC drive can be improved with the FPGA (field programmable gate array) hardware equipped with digital controllers. To improve the performance of AC drives, a new FPGA-based Wavect real-time prototype controller (Xilinx ZYNQ-7000 SoC) is used to verify the effectiveness of the controller. These advanced controllers are capable of reducing computation time and enhancing the drive performance in real- time applications. The comparative performance analysis is carried out for the most commonly used voltage source inverter (VSI)-based PWM techniques such as sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) for three-phase, two-level inverters. The comparative study shows the SVPWM technique utilizes DC bus voltage more effectively and produces less harmonic distortion in terms of higher output voltage, flexible control of output frequency, and reduced harmonic distortion at output voltage for motor control applications. The simulation and hardware results are verified and validated by using MATLAB/Simulink software and FPGA-based Wavect real-time controller respectively.

Article
Efficient Optical OFDM System Resilience to Indoor Wireless Multipath Channels

Hussein A. Leftah

Pages: 78-83

PDF Full Text
Abstract

This article presents a developed intensity modulation/direct detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM). More precisely, the presented C-O-OFDM is based on the C-transform as a unitary orthogonal transform instead of the state-of-the-art discrete Fourier transform (DFT). Due to the properties of the real C-transform, Hermitian symmetry (HS) is not required to produce real OFDM samples. Therefore, the proposed scheme supports twice the input symbols compared to conventional DFT-based OFDM system. Real data mapping and DC bias technology is considered to evaluate the performance of the presented scheme over optical wireless multipath. The simulation results shows that the proposed C-O-OFDM is more resilience to multipath phenomena than the competitive DFT-O-OFDM and DHT-O-OFDM schemes for similar bit rate. The proposed scheme achieves about 22 dB signal-to-noise ratio (SNR) gain in comparison with the DFT-O-OFDM and about 2.5dB SNR gain in comparison with the DHT-O-OFDM scheme.

Article
Patients Monitoring and Data Management System for Hospitals

Shahad Abdulrahman Khuder, Sura Nawfal Abdulrazzaq

Pages: 107-116

PDF Full Text
Abstract

This work concerns creating a monitoring system for a smart hospital using Raspberry Pi to measure vital signs. The readings are continually sent to central monitoring units outside the room instead of being beside the patients, to ensure less contacting between the medical staff and patients, also the cloud is used for those who leave the hospital, as the design can track on their medical cases. Data presentation and analysis were accomplished by the LabVIEW program. A Graphical User Interface (GUI) has been created by the Virtual-Instrument (VI) of this program that offer real-time access to monitor patients’ measurements. If unhealthy states are detected, the design triggers alerts and sends SMS message to the doctor. Furthermore, the clinicians can scan a QR code (which is assigned to each patient individually) to access its real-time measurements. The system also utilizes Electrocardiography (ECG) to detect abnormalities and identify specific heart diseases based on its extracted parameters to encourage patients to seek timely medical attention, while aiding doctors in making well-informed decisions. To evaluate the system’s performance, it is tested in the hospital on many patients of different ages and diseases as well. According to the results, the accuracy measurement of SpO2 was about 98.39%, 97.7% for (heart rate) and 98.7% for body temperature. This shows that the system can offer many patients receiving health services from various facilities, and it ensures efficient data management, access control, real-time monitoring, and secure patient information aligning with healthcare standards.

Article
Self-Powered Wide Area Infrastructure Based on WiMAX for Real Time Applications of Smart Grid

Firas S. Alsharbaty, Qutaiba I. Ali

Pages: 92-100

PDF Full Text
Abstract

This work presents a wireless communication network (WCN) infrastructure for the smart grid based on the technology of Worldwide Interoperability for Microwave Access (WiMAX) to address the main real-time applications of the smart grid such as Wide Area Monitoring and Control (WAMC), video surveillance, and distributed energy resources (DER) to provide low cost, flexibility, and expansion. Such wireless networks suffer from two significant impairments. On one hand, the data of real- time applications should deliver to the control center under robust conditions in terms of reliability and latency where the packet loss is increased with the increment of the number of industrial clients and transmission frequency rate under the limited capacity of WiMAX base station (BS). This research suggests wireless edge computing using WiMAX servers to address reliability and availability. On the other hand, BSs and servers consume affected energy from the power grid. Therefore, the suggested WCN is enhanced by green self-powered based on solar energy to compensate for the expected consumption of energy. The model of the system is built using an analytical approach and OPNET modeler. The results indicated that the suggested WCN based on green WiMAX BS and green edge computing can handle the latency and data reliability of the smart grid applications successfully and with a self-powered supply. For instance, WCN offered latency below 20 msec and received data reliability up to 99.99% in the case of the heaviest application in terms of data.

Article
Comparison of Complex-Valued Independent Component Analysis Algorithms for EEG Data

Ali Al-Saegh

Pages: 1-12

PDF Full Text
Abstract

Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex- valued ICA algorithm. In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain activity and not to artifact activity. The performance of locating a dipole for each separated independent component is considered in the comparison as well. Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain.

Article
License Plate Detection and Recognition in Unconstrained Environment Using Deep Learning

Heba Hakim, Zaineb Alhakeem, Hanadi Al-Musawi, Mohammed A. Al-Ibadi, Alaa Al-Ibadi

Pages: 210-220

PDF Full Text
Abstract

Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.

Article
Reactive Power Optimization with Chaotic Firefly Algorithm and Particle Swarm Optimization in A Distribution Subsystem Network

Hamza Yapıcı Eregli Vocational School, Nurettin Çetinkaya

Pages: 71-78

PDF Full Text
Abstract

In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.

Article
A Study of the Optimal Allocation of Shunt Capacitor Based on Modified Loss Sensitivity Algorithm

Warid Sayel Warid, Emad Allawi Mohsin

Pages: 56-61

PDF Full Text
Abstract

Minimization of active power losses is one of the essential aims for any electric utility, due to its importance in improvement of system properties towards minimum production cost and to support increase load requirement. In this paper we have studied the possibility of reducing the value of real power losses for (IEEE-14- Bus bar) global system transmission lines by choosing the best location to install shunt capacitor depending on new algorithm for calculate the optimal allocation, which considering the value of real power losses derivative with injection reactive power as an indicator of the ability of reducing losses at load buses. The results show the validity of this method for application in electric power transmission lines.

Article
Fuzzy-Neural Petri Net Distributed Control System Using Hybrid Wireless Sensor Network and CAN Fieldbus

Ali A. Abed, Abduladhem A. Ali, Nauman Aslam Computer Science & Digital Techniques, Northumbria Univ. nauman.aslam@northumbria.ac.uk, Ali F. Marhoon

Pages: 54-70

PDF Full Text
Abstract

The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN) based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS). The implementation of our wireless system involves the building of a wireless sensor network (WSN) for data acquisition and controller area network (CAN) protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID- like Fuzzy Neural Petri Net (FNPN) system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN) controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.

Article
Intelligent Feedback Scheduling of Control Tasks

Fatin I. Telchy

Pages: 64-79

PDF Full Text
Abstract

An efficient feedback scheduling scheme based on the proposed Feed Forward Neural Network (FFNN) scheme is employed to improve the overall control performance while minimizing the overhead of feedback scheduling which exposed using the optimal solutions obtained offline by mathematical optimization methods. The previously described FFNN is employed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. The proposed intelligent scheduler will be examined with different optimization algorithms. An inverted pendulum cost function is used in these experiments. Then, simulation of three inverted pendulums as intelligent Real Time System (RTS) is described in details. Numerical simulation results demonstrates that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling

Article
Interactive Real-Time Control System for The Artificial Hand

Hanadi Abbas Jaber, Mofeed Turky Rashid, Luigi Fortuna

Pages: 62-71

PDF Full Text
Abstract

In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) signals have been employed for hand gesture identification, in which the performance of the classification process can be improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as (HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand.

Article
Transient stability Assessment using Artificial Neural Network Considering Fault Location

nan P.K.Olulope, nan K.A.Folly, nan S.Chowdhury, nan S.P.Chowdhury

Pages: 67-72

PDF Full Text
Abstract

This paper describes the capability of artificial neural network for predicting the critical clearing time of power system. It combines the advantages of time domain integration schemes with artificial neural network for real time transient stability assessment. The training of ANN is done using selected features as input and critical fault clearing time (CCT) as desire target. A single contingency was applied and the target CCT was found using time domain simulation. Multi layer feed forward neural network trained with Levenberg Marquardt (LM) back propagation algorithm is used to provide the estimated CCT. The effectiveness of ANN, the method is demonstrated on single machine infinite bus system (SMIB). The simulation shows that ANN can provide fast and accurate mapping which makes it applicable to real time scenario.

Article
LabVIEW Venus Flytrap ANFIS Inverse Control System for Microwave Heating Cavity

Wasan A. Wali, Atheel K. Abdul Zahra, Hanady S. Ahmed

Pages: 189-198

PDF Full Text
Abstract

Growing interests in nature-inspired computing and bio-inspired optimization techniques have led to powerful tools for solving learning problems and analyzing large datasets. Several methods have been utilized to create superior performance-based optimization algorithms. However, certain applications, like nonlinear real-time, are difficult to explain using accurate mathematical models. Such large-scale combination and highly nonlinear modeling problems are solved by usage of soft computing techniques. So, in this paper, the researchers have tried to incorporate one of the most advanced plant algorithms known as Venus Flytrap Plant algorithm(VFO) along with soft-computing techniques and, to be specific, the ANFIS inverse model-Adaptive Neural Fuzzy Inference System for controlling the real-time temperature of a microwave cavity that heats oil. The MATLAB was integrated successfully with the LabVIEW platform. Wide ranges of input and output variables were experimented with. Problems were encountered due to heating system conditions like reflected power, variations in oil temperature, and oil inlet absorption and cavity temperatures affecting the oil temperature, besides the temperature’s effect on viscosity. The LabVIEW design followed and the results figure in the performance of the VFO- Inverse ANFIS controller.

Article
Radio Contact Establishment Out of Iraqi Boarder using Nicosia Ionosonde Real data

Ahmed Kadhim Hassan

Pages: 103-107

PDF Full Text
Abstract

Although the advanced technology in satellites and optical fiber communication systems exists now a day, but the researches in HF sky wave propagation for Mesopotamia (Iraq) area is suffered from shortage. In this paper, the novelty is that the communication path from Baghdad to any distance out of Iraqi border had been predicted, calculated and measured experimentally by using real data (Ionogram) supplemented by Nicosia Ionosound station 1000Km from Baghdad and a radio station model TS-130SE as a transmitter. The Predicted results generated by using MATLAB and NTIA/ITS software package like VOACAP. Radio communication using TS-130SE with 36 countries had been done experimentally. A comparison between the theoretical and experimental results was done. The experimental results were in the range of the predicated results which emphasis proposed method Presented in this paper .

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

Article
Optimal Assimilation of Distributed Generation in Radial Power Distribution System Using Hybrid Approach

S K B Pradeepkumar CH, Sakthidasan A, Sundar R, Senthil Kumar M, Rajakumar P, Baburao P

Pages: 134-144

PDF Full Text
Abstract

The performance of power distribution systems (PDS) has improved greatly in recent times ever since the distributed generation (DG) unit was incorporated in PDS. DG integration effectively cuts down the line power losses (PL) and strengthens the bus voltages (BV) provided the size and place are optimized. Accordingly, in the present work, a hybrid optimization technique is implemented for incorporating a single DG unit into radial PDS. The proposed hybrid method is formed by integrating the active power loss sensitivity (APLS) index and whale optimization meta-heuristic algorithm. The ideal place and size for DG are optimized to minimize total real power losses (TLP) and enhance bus voltages (BV). The applicability of the proposed hybrid technique is analyzed for Type I and Type III DG installation in a balanced IEEE 33-bus and 69-bus radial PDS. Optimal inclusion of type I and III DG in a 33-bus radial test system cut down TLP by 51.85% and 70.02% respectively. Likewise, optimal placement of type I and III DG reduced TLP by 65.18%, and 90.40%, respectively for 69-bus radial PDS. The impact of DG installation on the performance of radial PDS has been analyzed and a comparative study is also presented to examine the sovereignty of the proposed hybrid method. The comparative study report outlined that the proposed hybrid method can be a better choice for solving DG optimization in radial PDS.

Article
Advancements and Challenges in Hand Gesture Recognition: A Comprehensive Review

Bothina Kareem Murad, Abbas H. Hassin Alasadi

Pages: 154-164

PDF Full Text
Abstract

Hand gesture recognition is a quickly developing field with many uses in human-computer interaction, sign language recognition, virtual reality, gaming, and robotics. This paper reviews different ways to model hands, such as vision-based, sensor-based, and data glove-based techniques. It emphasizes the importance of accurate hand modeling and feature extraction for capturing and analyzing gestures. Key features like motion, depth, color, shape, and pixel values and their relevance in gesture recognition are discussed. Challenges faced in hand gesture recognition include lighting variations, complex backgrounds, noise, and real-time performance. Machine learning algorithms are used to classify and recognize gestures based on extracted features. The paper emphasizes the need for further research and advancements to improve hand gesture recognition systems’ robustness, accuracy, and usability. This review offers valuable insights into the current state of hand gesture recognition, its applications, and its potential to revolutionize human-computer interaction and enable natural and intuitive interactions between humans and machines. In simpler terms, hand gesture recognition is a way for computers to understand what people are saying with their hands. It has many potential applications, such as allowing people to control computers without touching them or helping people with disabilities communicate. The paper reviews different ways to develop hand gesture recognition systems and discusses the challenges and opportunities in this area.

Article
Design and Implementation of a Fuzzy Controller for Small Rotation Angles

Mohammed Mahmood Hussein

Pages: 14-18

PDF Full Text
Abstract

This paper present an adaptation mechanism for fuzzy logic controller FLC in order to perfect the response performance against small rotation angles of real D.C. motor with unknown parameters. A supervisor fuzzy controller SFC is designed to continuously adjust, on-line, the universe of discourse UOD of the basic fuzzy controller BFC input variables based on position error and change of position error. Performance of the proposed adaptive fuzzy controller is compared with corresponding conventional FLC in terms of several performance measures such rise time, settling time, peak overshoot, and steady state error. The system design and implementation are carried out using LabVIEW 2009 with NI PCI-6251 data acquisition DAQ card. The practical results demonstrate using self tuning FLC scheme grant a better performance as compared with conventional FLC which is incapable of rotating a motor if the rotation angle is being small.

Article
Robust Control Design for Two-Wheel Self-Balanced Mobile Robot

Hasanain H. Mohsin, Ammar A. Aldair, Walid A. Al-Hussaibi

Pages: 38-46

PDF Full Text
Abstract

As a key type of mobile robot, the two-wheel mobile robot has been developed rapidly for varied domestic, health, and industrial applications due to human-like movement and balancing characteristics based on the inverted pendulum theory. This paper presents a developed Two-Wheel Self-Balanced Robot (TWSBR) model under road disturbance effects and simulated using MATLAB Simscape Multibody. The considered physical-mechanical structure of the proposed TWSBS is connected with a Simulink controller scheme by employing physical signal converters to describe the system dynamics efficiently. Through the Simscape environment, the TWSBR motion is visualized and effectively analyzed without the need for complicated analysis of the associated mathematical model. Besides, 3D visualization of real-time behavior for the implemented TWSBR plant model is displayed by Simulink Mechanics Explorer. Robot balancing and stability are achieved by utilizing Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers' approaches considering specific control targets. A comparative study and evaluation of both controllers are conducted to verify the robustness and road disturbance rejection. The realized performance and robustness of developed controllers are observed by varying object-carrying loaded up on mechanical structure layers during robot motion. In particular, the objective weight is loaded on the robot layers (top, middle, and bottom) during disturbance situations. The achieved findings may have the potential to extend the deployment of using TWSBRs in the varied important application.

Article
Automated Power Factor Correction for Smart Home

Bilal Naji Alhasnawi, Basil H.Jasim

Pages: 30-40

PDF Full Text
Abstract

In the current scenario, power factor has become an important concern in all industries. Poor power factor gives rise to many problems which result in financial loss of industries and also for the commercial users. The main concern of this work is to improve the usage of real power with respect to reactive power hence improving the power factor. Here we have used the technique of relay switching method with a capacitor so that any drop in power factor can be sensed by the controller and switch the capacitor as required. This will not only help to improve power factor but also demand of electricity supply on utility side will be reduced. The Significance of this work is to build an APFC (Automatic Power Factor Correction) Unit. The APFC appliance calculates the reactive power (KVAR) expended by a system’s load and compensates the lagging PF (power factor) utilizing capacitances from capacitor banks.

Article
Improving Performance of Searchable Symmetric Encryption Through New Information Retrieval Scheme

Aya A. Alyousif, Ali A. Yassin

Pages: 68-77

PDF Full Text
Abstract

Searchable symmetric encryption (SSE) is a robust cryptographic method that allows users to store and retrieve encrypted data on a remote server, such as a cloud server, while maintaining the privacy of the user’s data. The technique employs symmetric encryption, which utilizes a single secret key for both data encryption and decryption. However, extensive research in this field has revealed that SSE encounters performance issues when dealing with large databases. Upon further investigation, it has become apparent that the issue is due to poor locality, necessitating that the cloud server access multiple memory locations for a single query. Additionally, prior endeavors in this domain centered on locality optimization have often led to expanded storage requirements (the stored encrypted index should not be substantially larger than the original index) or diminished data retrieval efficiency (only required data should be retrieved).we present a simple, secure, searchable, and cost-effective scheme, which addresses the aforementioned problems while achieving a significant improvement in information retrieval performance through site optimization by changing the encrypted inverted index storage mechanism. The proposed scheme has the optimal locality O(1) and the best read efficiency O(1)with no significant negative impact on the storage space, which often increases due to the improvement of the locality. Using real-world data, we demonstrate that our scheme is secure, practical, and highly accurate. Furthermore, our proposed work can resist well-known attacks such as keyword guessing attacks and frequency analysis attacks.

Article
Parameter Identification of a PMSG Using a PSO Algorithm Based on Experimental Tests

A. J. Mahdi, W. H. Tang, Q. H. Wu

Pages: 39-44

PDF Full Text
Abstract

An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.

Article
Emotion Recognition Based on Mining Sub-Graphs of Facial Components

Suhaila N. Mohammed, Alia K. Abdul Hassan

Pages: 39-48

PDF Full Text
Abstract

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.

Article
Generalized Chebyshev-like Approximation for Low-pass Filter

Hisham L. Swady

Pages: 5-8

PDF Full Text
Abstract

Analog filters constitute indispensible component of analog circuits and still playing an important part in interface with analog real world. realizing filters with odd order is preferred because of its time response . Therefore, this paper is conducted to introduce a new generalized Chebyshev – like approximation for analog filters. The analyses presented to realize the filters with odd order. This proposed novel approach offer good results in terms of flat delay and time domain response. Also, the achieved results are validated by comparison to normal Chebyshev filter via investigation several examples .

Article
Semi-Empirical Models for the Variation of Soil Complex Permittivity with Depth

Jawad K. Ali, Adil H. Ahmad

Pages: 26-32

PDF Full Text
Abstract

In this paper new semi-empirical formulas are developed to evaluate the variation of both real and imaginary parts of soil complex permittivity with depth inside the earth's surface. Computed values using these models show good agreement with published measured values for soils of the same textures and same frequency band. Use of these models may serve to handle more accurate results especially in the ground probing radar (GPR) applications and other applications relating the detection of buried objects inside the earth's surface, where the use of a single average value of the soil complex permittivity had not necessarily led, for most of the times, to accurate results for the electromagnetic fields propagated inside the earth's surface.

Article
State Estimation via Phasor Measurement Units for Iraqi National Super Grid Power System Network

Husham Idan Hussein

Pages: 12-22

PDF Full Text
Abstract

In this paper describes the operation of power system networks to be nearest to stability rated values limits. State estimation for monitoring and protection power system is very important because it provides a real-time (RT) Phase angle of different nodes of accuracy and then analysis and decided to choose control way (methods). In order to detect the exact situation (instant state) for power system networks parameters. In this paper proposes a new monitoring and analysis system state estimation method integrating with MATLAB environment ability, by using phasor measurement units (PMU's) technology, by this system the estimation problem, iterations numbers, and processing time will reduce. The measurements of phasors value of voltage signal and current estimated and analyzed. Mat lab/PSAT package use as a tool to design and simulate four electrical power systems networks such as INSG 24 buses, IEEE14 bus, Diyala city 10buses (IRAQ), and IEEE6 bus and then installed and applied PMU’s devices to each system. Simulation results show that the PMU's performances effectiveness appear clearly. All results show the validation of PMU’s devices as an estimator to power system networks states and a significant improvement in the accuracy of the calculation of network status. All results achieved and discussed through this paper setting up mathematical models with Graph Theoretic Procedure algorithm.

Article
An Efficient Path Planning in Uncertainty Environments using Dynamic Grid-Based and Potential Field Methods

Suhaib Al-Ansarry, Salah Al-Darraji, Dhafer G. Honi

Pages: 90-99

PDF Full Text
Abstract

Path planning is an essential concern in robotic systems, and it refers to the process of determining a safe and optimal path starting from the source state to the goal one within dynamic environments. We proposed an improved path planning method in this article, which merges the Dijkstra algorithm for path planning with Potential Field (PF) collision avoidance. In real-time, the method attempts to produce multiple paths as well as determine the suitable path that’s both short and reliable (safe). The Dijkstra method is employed to produce multiple paths, whereas the Potential Field is utilized to assess the safety of each route and choose the best one. The proposed method creates links between the routes, enabling the robot to swap between them if it discovers a dynamic obstacle on its current route. Relating to path length and safety, the simulation results illustrate that Dynamic Dijkstra-Potential Field (Dynamic D-PF) achieves better performance than the Dijkstra and Potential Field each separately, and going to make it a promising solution for the application of robotic automation within dynamic environments.

Article
Hard Constraints Explicit Model Predictive Control of an Inverted Pendulum

Haider A. F. Mohamed, Masood Askari, M. Moghavvemi

Pages: 28-32

PDF Full Text
Abstract

In this paper, explicit model predictive controller is applied to an inverted pendulum apparatus. Explicit solutions to constrained linear model predictive controller can be computed by solving multi-parametric quadratic programs. The solution is a piecewise affine function, which can be evaluated at each sample to obtain the optimal control law. The on-line computation effort is restricted to a table-lookup. This admits implementation on low cost hardware at high sampling frequencies in real-time systems with high reliability and low software complexity. This is useful for systems with limited power and CPU resources.

Article
Indoor Low Cost Assistive Device using 2D SLAM Based on LiDAR for Visually Impaired People

Heba Hakim, Ali Fadhil

Pages: 115-121

PDF Full Text
Abstract

Many assistive devices have been developed for visually impaired (VI) person in recent years which solve the problems that face VI person in his/her daily moving. Most of researches try to solve the obstacle avoidance or navigation problem, and others focus on assisting VI person to recognize the objects in his/her surrounding environment. However, a few of them integrate both navigation and recognition capabilities in their system. According to above needs, an assistive device is presented in this paper that achieves both capabilities to aid the VI person to (1) navigate safely from his/her current location (pose) to a desired destination in unknown environment, and (2) recognize his/her surrounding objects. The proposed system consists of the low cost sensors Neato XV-11 LiDAR, ultrasonic sensor, Raspberry pi camera (CameraPi), which are hold on a white cane. Hector SLAM based on 2D LiDAR is used to construct a 2D-map of unfamiliar environment. While A* path planning algorithm generates an optimal path on the given 2D hector map. Moreover, the temporary obstacles in front of VI person are detected by an ultrasonic sensor. The recognition system based on Convolution Neural Networks (CNN) technique is implemented in this work to predict object class besides enhance the navigation system. The interaction between the VI person and an assistive system is done by audio module (speech recognition and speech synthesis). The proposed system performance has been evaluated on various real-time experiments conducted in indoor scenarios, showing the efficiency of the proposed system.

Article
PLC/HMI Based Portable Workbench for PLC and Digital Logic Learning and Application Development

Jawad Radhi Mahmood, Ramzy Salim Ali

Pages: 83-96

PDF Full Text
Abstract

A Programmable logic controller (PLC) uses the digital logic circuits and their operating concepts in its hardware structure and its programming instructions and algorithms. Therefore, the deep understanding of these two items is staple for the development of control applications using the PLC. This target is only possible through the practical sensing of the various components or instructions of these two items and their applications. In this work, a user-friendly and re-configurable ladder, digital logic learning and application development design and testing platform has been designed and implemented using a Programmable Logic Controller (PLC), Human Machine Interface panel (HMI), four magnetic contactors, one Single-phase power line controller and one Variable Frequency Drive (VFD) unit. The PLC role is to implement the ladder and digital logic functions. The HMI role is to establish the virtual circuit wiring and also to drive and monitor the developed application in real time mode of application. The magnetic contactors are to play the role of industrial field actuators or to link the developed application control circuit to another field actuator like three phase induction motor. The Single -phase power line controller is to support an application like that of the soft starter. The VFD is to support induction motor driven applications like that of cut-to-length process in which steel coils are uncoiled and passed through cutting blade to be cut into required lengths. The proposed platform has been tested through the development of 14 application examples. The test results proved the validity of the proposed platform.

Article
Handwritten Signature Verification Method Using Convolutional Neural Network

Wijdan Yassen A. AlKarem, Eman Thabet Khalid, Khawla. H. Ali

Pages: 77-84

PDF Full Text
Abstract

Automatic signature verification methods play a significant role in providing a secure and authenticated handwritten signature in many applications, to prevent forgery problems, specifically institutions of finance, and transections of legal papers, etc. There are two types of handwritten signature verification methods: online verification (dynamic) and offline verification (static) methods. Besides, signature verification approaches can be categorized into two styles: writer dependent (WD), and writer independent (WI) styles. Offline signature verification methods demands a high representation features for the signature image. However, lots of studies have been proposed for WI offline signature verification. Yet, there is necessity to improve the overall accuracy measurements. Therefore, a proved solution in this paper is depended on deep learning via convolutional neural network (CNN) for signature verification and optimize the overall accuracy measurements. The introduced model is trained on English signature dataset. For model evaluation, the deployed model is utilized to make predictions on new data of Arabic signature dataset to classify whether the signature is real or forged. The overall obtained accuracy is 95.36% based on validation dataset.

Article
Analysis of the determinism of time-series extracted from social and biological systems

Fortuna Luigi, Frasca Mattia, Gambuzza Lucia Valentina, Sarra Fiore Angelo, Ramzy S. Ali, Mofeed T. Rashid

Pages: 180-185

PDF Full Text
Abstract

Self-organizing systems arise in many different fields. In this work we analyze data from social and biological systems. A central question is to demonstrate the presence of the determinism in time-series extracted from such systems that appear apparently not correlated but that are two good benchmarks for the study of complexity in real systems. We will apply the Kaplan test and we will define an order parameter for the biological data to characterize the complexity of the system.

Article
Expanding New Covid-19 Data with Conditional Generative Adversarial Networks

Haneen Majid, Khawla Hussein Ali

Pages: 103-110

PDF Full Text
Abstract

COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.

Article
Theoretical Study in the Realization of Real-Time Parallel Optical Logic Operations Using Two-Wave Mixing in Photorefractive Materials

R.S. Fyath, J.M. Abdul-Jabbar, S.M. Ameen

Pages: 15-29

PDF Full Text
Abstract

A theoretical analysis is presented to calculate the signal phase shift and the gain coefficient associated with two-wave mixing in photorefractive crystals subjected to an external electric field. The relative position of the induced-refractive index grating with respect to the fringe pattern of the two input optical beams leads to a coupling effect between the phase and intensity of these beams. An optical logic operation system that is based on photorefractive two-wave mixing is introduced. This system uses the fringe-shifting techniques that are executed by a Mach-Zehnder interferometer. The proposed system configurations are capable of producing all the basic 16 two-operand Boolean functions simultaneously at different output planes.

Article
Wireless Sensor Network for Medical Applications

Hanady S.Ahmed, Abduladhem Abdulkareem Ali

Pages: 49-59

PDF Full Text
Abstract

This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.

Article
Towards for Designing Intelligent Health Care System Based on Machine Learning

Nada Ali Noori, Ali A. Yassin

Pages: 120-128

PDF Full Text
Abstract

Health Information Technology (HIT) provides many opportunities for transforming and improving health care systems. HIT enhances the quality of health care delivery, reduces medical errors, increases patient safety, facilitates care coordination, monitors the updated data over time, improves clinical outcomes, and strengthens the interaction between patients and health care providers. Living in modern large cities has a significant negative impact on people's health, for instance, the increased risk of chronic diseases such as diabetes. According to the rising morbidity in the last decade, the number of patients with diabetes worldwide will exceed 642 million in 2040, meaning that one in every ten adults will be affected. All the previous research on diabetes mellitus indicates that early diagnoses can reduce death rates and overcome many problems. In this regard, machine learning (ML) techniques show promising results in using medical data to predict diabetes at an early stage to save people's lives. In this paper, we propose an intelligent health care system based on ML methods as a real-time monitoring system to detect diabetes mellitus and examine other health issues such as food and drug allergies of patients. The proposed system uses five machine learning methods: K-Nearest Neighbors, Naïve Bayes, Logistic Regression, Random Forest, and Support Vector Machine (SVM). The system selects the best classification method with high accuracy to optimize the diagnosis of patients with diabetes. The experimental results show that in the proposed system, the SVM classifier has the highest accuracy of 83%.

Article
Polygon Shape Formation for Multi-Mobile Robots in a Global Knowledge Environment

Abdulmuttalib T. Rashid, Abduladhem A. Ali, Mattia Frasca DIEEI

Pages: 76-88

PDF Full Text
Abstract

In coordination of a group of mobile robots in a real environment, the formation is an important task. Multi- mobile robot formations in global knowledge environments are achieved using small robots with small hardware capabilities. To perform formation, localization, orientation, path planning and obstacle and collision avoidance should be accomplished. Finally, several static and dynamic strategies for polygon shape formation are implemented. For these formations minimizing the energy spent by the robots or the time for achieving the task, have been investigated. These strategies have better efficiency in completing the formation, since they use the cluster matching algorithm instead of the triangulation algorithm.

Article
Self-Organization of Multi-Robot System Based on External Stimuli

Yousif Abdulwahab Kheerallah, Ali Fadhil Marhoon, Mofeed Turky Rashid, Abdulmuttalib Turky Rashid

Pages: 101-114

PDF Full Text
Abstract

In modern robotic field, many challenges have been appeared, especially in case of a multi-robot system that used to achieve tasks. The challenges are due to the complexity of the multi-robot system, which make the modeling of such system more difficult. The groups of animals in real world are an inspiration for modeling of a multi- individual system such as aggregation of Artemia. Therefore, in this paper, the multi-robot control system based on external stimuli such as light has been proposed, in which the feature of tracking Artemia to the light has been employed for this purpose. The mathematical model of the proposed design is derived and then Simulated by V-rep software. Several experiments are implemented in order to evaluate the proposed design, which is divided into two scenarios. The first scenario includes simulation of the system in situation of attraction of robot to fixed light spot, while the second scenario is the simulation of the system in the situation of the robots tracking of the movable light spot and formed different patterns like a straight-line, circular, and zigzag patterns. The results of experiments appeared that the mobile robot attraction to high-intensity light, in addition, the multi-robot system can be controlled by external stimuli. Finally, the performance of the proposed system has been analyzed.

Article
Design and FPGA Implementation of a Hyper-Chaotic System for Real-time Secure Image Transmission

Abdul-Basset A. Al-Hussein, Fadhil Rahma Tahir, Ghaida A. Al-Suhail

Pages: 55-68

PDF Full Text
Abstract

Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484 to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed system.

Article
A Secure Image Cryptographic Algorithm Based on Triple Incorporated Ciphering Stages

Sura F. Yousif, Abbas Salman Hameed, Dheyaa T. Al-Zuhairi

Pages: 1-21

PDF Full Text
Abstract

Lately, image encryption has stand out as a highly urgent demand to provide high security for digital images against use and unauthorized distribution. A lot of existing researches use chaotic systems, symmetric or asymmetric schemes for image encryption, but cryptosystem based on one encryption technique only, faces many challenges like weak security and low complexity. Therefore, incorporating two or more different ciphering methods yields a secure and efficient algorithm to protect image information. In this work, a new image cryptosystem is suggested by joining zigzag scan technique, RSA algorithm and chaotic systems. These three security factors introduce Triple Incorporated Ciphering stages system (TIC). Initially, the plaintext image is divided into 8 × 8 non-overlapping blocks, then the odd blocks are isolated from the even blocks. After that, a new modified zigzag scan in two different directions is adopted for shuffling pixels in the odd and even blocks. This operation effectively enhances the shuffling degree. Next, the RSA algorithm is utilized after combining the scrambled blocks in one matrix. Finally, chaotic systems are implemented on the resultant encrypted matrix to complete the ciphering process. The chaos is implemented in two steps; confusion and diffusion. Duffing map is exploited in the confusion stage, whereas L¨u system is adopted on the shuffled matrix in the diffusion stage. The simulation results show the superiority of TIC in both security and attacks robustness compared to other cryptographic algorithms. Therefore, TIC can be exploited in real-time communication systems for secure image transmission.

Article
LabVIEW FPGA Implementation Of a PID Controller For D.C. Motor Speed Control

Fakhrulddin H. Ali, Mohammed Mahmood Hussein, Sinan M.B. Ismael

Pages: 139-144

PDF Full Text
Abstract

This Paper presents a novel hardware design methodology of digital control systems. For this, instead of synthesizing the control system using Very high speed integration circuit Hardware Description Language (VHDL), LabVIEW FPGA module from National Instrument (NI) is used to design the whole system that include analog capture circuit to take out the analog signals (set point and process variable) from the real world, PID controller module, and PWM signal generator module to drive the motor. The physical implementation of the digital system is based on Spartan-3E FPGA from Xilinx. Simulation studies of speed control of a D.C. motor are conducted and the effect of a sudden change in reference speed and load are also included.

Article
Face Recognition System Against Adversarial Attack Using Convolutional Neural Network

Ansam Kadhi, Salah Al-Darraji

Pages: 1-8

PDF Full Text
Abstract

Face recognition is the technology that verifies or recognizes faces from images, videos, or real-time streams. It can be used in security or employee attendance systems. Face recognition systems may encounter some attacks that reduce their ability to recognize faces properly. So, many noisy images mixed with original ones lead to confusion in the results. Various attacks that exploit this weakness affect the face recognition systems such as Fast Gradient Sign Method (FGSM), Deep Fool, and Projected Gradient Descent (PGD). This paper proposes a method to protect the face recognition system against these attacks by distorting images through different attacks, then training the recognition deep network model, specifically Convolutional Neural Network (CNN), using the original and distorted images. Diverse experiments have been conducted using combinations of original and distorted images to test the effectiveness of the system. The system showed an accuracy of 93% using FGSM attack, 97% using deep fool, and 95% using PGD.

Article
Design and Implementation of Monitoring System for Lethal Events of High-Risk COVID-19 Patients

Suhad Qasim Naeem, Ammar Ibrahim Majeed, Noor Nateq ALfaisaly

Pages: 221-231

PDF Full Text
Abstract

The monitoring of COVID-19 patients has been greatly aided by the Internet of Things (IoT). Vital signs, symptoms, and mobility data can be gathered and analyzed by IoT devices, including wearables, sensors, and cameras. This information can be utilized to spot early infection symptoms, monitor the illness’s development, and stop the virus from spreading. It’s critical to take vital signs of hospitalized patients in order to assess their health. Although early warning scores are often calculated three times a day, they might not indicate decompensation symptoms right away. Death rates are higher when deterioration is not properly diagnosed. By employing wearable technology, these ongoing assessments may be able to spot clinical deterioration early and facilitate prompt therapies. This research describes the use of Internet of Things (IoT) to follow fatal events in high-risk COVID-19 patients. These patients’ vital signs, which include blood pressure, heart rate, respiration rate, blood oxygen level, and fever, are taken and fed to a central server on a regular basis so that information may be processed, stored, and published instantly. After processing, the data is utilized to monitor the patients’ condition and send Short Message Service (SMS) alerts when the patients’ vital signs rise above predetermined thresholds. The system’s design, which is based on two ESP32 controllers, sensors for the vital signs listed above, and a gateway, provides real-time reports, high-risk alerts, and patient status information. Clinicians, the patient’s family, or any other authorized person can keep an eye on and follow the patient’s status at any time and from any location. The main contribution in this work is the designed algorithm used in the gateway and the manner in which this gateway collects, analyze, process, and send the patient’s data to the IoT server from one side and the manner in which the gateway deals with the IoT server in the other side. The proposed method leads to reduce the cost and the time the system it takes to get the patient’s status report.

Article
Understanding Power Gating Mechanism Based on Workload Classification of Modern Heterogeneous Many-Core Mobile Platform in the Dark Silicon Era

Haider Alrudainy, Ali K. Marzook, Muaad Hussein, Rishad Shafik

Pages: 275-283

PDF Full Text
Abstract

The rapid progress in mobile computing necessitates energy efficient solutions to support substantially diverse and complex workloads. Heterogeneous many core platforms are progressively being adopted in contemporary embedded implementations for high performance at low power cost estimations. These implementations experience diverse workloads that offer drastic opportunities to improve energy efficiency. In this paper, we propose a novel per core power gating (PCPG) approach based on workload classifications (WLC) for drastic energy cost minimization in the dark silicon era. Core of our paradigm is to use an integrated sleep mode management based on workloads classification indicated by the performance counters. A number of real applications benchmark (PARSEC) are adopted as a practical example of diverse workloads, including memory- and CPU-intensive ones. In this paper, these applications are exercised on Samsung Exynos 5422 heterogeneous many core system showing up to 37% to 110% energy efficient when compared with our most recent published work, and ondemand governor, respectively. Furthermore, we illustrate low-complexity and low-cost runtime per core power gating algorithm that consistently maximize IPS/Watt at all state space.

Article
Design and Implementation of Line Follower Arduino Mobile Robot Using Matlab Simulink Toolbox

Mazin Majid Abdulnabi Alwan, Anwar Abdulrazzaq Green, Abdulazez Safaa Noori, Ammar A. Aldair

Pages: 11-16

PDF Full Text
Abstract

The main problem of line follower robot is how to make the mobile robot follows a desired path (which is a line drawn on the floor) smoothly and accurately in shortest time. In this paper, the design and implementation of a complex line follower mission is presented by using Matlab Simulink toolbox. The motion of mobile robot on the complex path is simulated by using the Robot Simulator which is programed in Matlab to design and test the performance of the proposed line follower algorithm and the designed PID controller. Due to the complexity of selection the parameters of PID controller, the Particle Swarm Optimization (PSO) algorithm are used to select and tune the parameters of designed PID controller. Five Infrared Ray (IR) sensors are used to collect the information about the location of mobile robot with respect to the desired path (black line). Depending on the collected information, the steering angle of the mobile robot will be controlled to maintain the robot on the desired path by controlling the speed of actuators (two DC motors). The obtained simulation results show that, the motion of mobile robot is still stable even the complex maneuver is performed. The hardware design of the robot system is perform by using the Arduino Mobile Robot (AMR). The Simulink Support Package for Arduino and control system toolbox are used to program the AMR. The practical results show that the performances of real mobile robot are exactly the same of the performances of simulated mobile robot.

Article
Real Time Sticky Bomb Detection System Based on Compass Device and Arduino Board

Sameer Hameed Majeed, Noor Kareem Jumaa, Auday A.H. Mohamad

Pages: 46-52

PDF Full Text
Abstract

This paper presents a new strategy of sticky bomb detection. The detection strategy is based on measuring the magnetic field around the targeted car using compass device. A compass measure the earth gravitation of the car as (x,y,z) coordination , a threshold value of magnetic fields around the targeted car are recorded. If a difference is detected with any (x,y,z) coordination, an alert SMS message is sent to the car's owner. The detection system presented in this paper has been implemented based on Arduino board. The alarm signal is a Short Message Service (SMS) through Global System for Mobile Communication (GSM) module. The proposed method can gives the people of unstable countries a chance to discover whether their cars have been trapped with an IED bomb or their car still safe.

Article
Coordination Tool for Overcurrent and Earth-Fault Relays at A 33/11 KV Power Distribution Substation in Basrah City

Basim Talib Kadhem, Nashaat K. Yaseen, Sumer S. Hardan, Mofeed Turky Rashid

Pages: 180-194

PDF Full Text
Abstract

The coordination of overcurrent relay protection in the power framework is crucial for preserving electrical distribution systems. It ensures that both primary and backup protection are provided to the system. It is essential to maintain a minimal level of coordination between these relays in order to reduce the overall running time and guarantee that power outages and damage are kept to a minimum under fault conditions. Proper coordination between the primary and back-up relays can minimize the operation duration of overcurrent with instantaneous and earth fault relays by selecting the optimum TMS (Time Multiplier Setting) and PS (Plug Setting). The present study investigates the difficulty associated with determining the TMS and PS values of earth-fault and overcurrent relays at the 33/11 kV power distribution substation in Basra using the instantaneous setting element. Overcurrent and earth fault relays were simulated in two scenarios: one with a time delay setting and one with an immediate setting. This procedure was carried out to generate Time Current Characteristics (TCC) curves for each Circuit Breaker (CB) relay took place in the Nathran substation, which has a capacity of 2×31.5 MVA and operates at a voltage level of 33/11 kV. The substation is a part of the Basrah distribution network. The short circuit current is estimated at each circuit breaker (CB), followed by the simulation of protection coordination for the Nathran substation using the DIgSILENT Power Factory software. This research is based on real data collection, and the setting considers the short-circuit current at the farthest point of the longest feeders. The results show the effectiveness of the proposed coordination scheme, which reduced trip operation time by 20% compared to the presented case study while maintaining coordination between primary and backup protection.

Article
Proposed Method for Optimizing Fuzzy linear programming Problems by using Two-Phase Technique

Zaki S. Towfik, Sabiha Fathil Jawad

Pages: 89-96

PDF Full Text
Abstract

Fuzzy linear programming (FLP ) is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming contains fuzzy constrains or crisp objectives function or contains crisp constrains with fuzzy objectives function, which called fuzzy linear programming (FLP) with triplet fuzzy numbers consist a hybrid fuzzy. The crisp constrains used in the problems of types (= or ≥) with a proposed optimization fuzzy objectives and fuzzy constrains. In this paper proposed method for solving fuzzy linear programming problem by using Two-phase technique to solve the problem and to determine the optima crisp objectives.

Article
Efficient Path Planning in Medical Environments: Integrating Genetic Algorithm and Probabilistic Roadmap (GA-PRM) for Autonomous Robotics

Sarah Sabeeh, Israa S. Al-Furati

Pages: 243-258

PDF Full Text
Abstract

Path-planning is a crucial part of robotics, helping robots move through challenging places all by themselves. In this paper, we introduce an innovative approach to robot path-planning, a crucial aspect of robotics. This technique combines the power of Genetic Algorithm (GA) and Probabilistic Roadmap (PRM) to enhance efficiency and reliability. Our method takes into account challenges caused by moving obstacles, making it skilled at navigating complex environments. Through merging GA’s exploration abilities with PRM’s global planning strengths, our GA-PRM algorithm improves computational efficiency and finds optimal paths. To validate our approach, we conducted rigorous evaluations against well-known algorithms including A*, RRT, Genetic Algorithm, and PRM in simulated environments. The results were remarkable, with our GA-PRM algorithm outperforming existing methods, achieving an average path length of 25.6235 units and an average computational time of 0.6881 seconds, demonstrating its speed and effectiveness. Additionally, the paths generated were notably smoother, with an average value of 0.3133. These findings highlight the potential of the GA-PRM algorithm in real-world applications, especially in crucial sectors like healthcare, where efficient path-planning is essential. This research contributes significantly to the field of path-planning and offers valuable insights for the future design of autonomous robotic systems.

Article
Building an HMI and Demo Application of WSN-based Industrial Control Systems

Ali A. Abed, AbdulAdhem A. Ali, Nauman Aslam

Pages: 107-111

PDF Full Text
Abstract

In this paper we present the details of methodology pursued in implementation of an HMI and Demo Temperature Monitoring application for wireless sensor-based distributed control systems. The application of WSN for a temperature monitoring and control is composed of a number of sensor nodes (motes) with a networking capability that can be deployed for monitoring and control purposes. The temperature is measured in the real time by the sensor boards that sample and send the data to the monitoring computer through a base station or gateway. This paper proposes how such monitoring system can be setup emphasizing on the aspects of low cost, energy-efficient, easy ad-hoc installation and easy handling and maintenance. This paper focuses on the overall potential of wireless sensor nodes and networking in industrial applications. A specific case study is given for the measurement of temperature (with thermistor or thermocouple), humidity, light and the health of the WSN. The focus was not on these four types of measurements and analysis but rather on the design of a communication protocol and building of an HMI software for monitoring. So, a set of system design requirements are developed that covered the use of the wireless platforms, the design of sensor network, the capabilities for remote data access and management, the connection between the WSN and an HMI software designed with MATLAB.

Article
Securing a Web-Based Hospital Management System Using a Combination of AES and HMAC

Alaa B. Baban, Safa A. Hameed

Pages: 93-99

PDF Full Text
Abstract

The demand for a secured web storage system is increasing daily for its reliability which ensures data privacy and confidentiality. The proposed paper aims to find the most secure ways to maintain integrity and protect privacy and security in healthcare management systems. The Advanced Encryption Standard (AES) algorithm is used to encrypt data transferred by providing a means to check the integrity of information transmitted and make it more immune to cyberattack techniques, this was implemented by using Keyed-Hash Message Authentication Code (HMAC) and Secured Hash Algorithm-256 (SHA-256). The risk of exposure to attackers can be avoided by using honeypot systems combined with Intrusion detection systems (IDSs) as a firewall system is not effective against such attacks alone. The experimental results evaluate the proposed security health information management system by comparing the performance of the encryption algorithm based on encryption time, memory and CPU usage, and entropy for different plaintext lengths. In addition, it can be seen that when changing the AES key size, more memory and time are required the longer the key size is used. The 128 bits AES key is therefore advised if the system must operate in hard real-time.

Article
Reduced Area and Low Power Implementation of FFT/IFFT Processor

Shefa A. Dawwd, Suha. M. Nori

Pages: 108-119

PDF Full Text
Abstract

The Fast Fourier Transform (FFT) and Inverse FFT(IFFT) are used in most of the digital signal processing applications. Real time implementation of FFT/IFFT is required in many of these applications. In this paper, an FPGA reconfigurable fixed point implementation of FFT/IFFT is presented. A manually VHDL codes are written to model the proposed FFT/IFFT processor. Two CORDIC-based FFT/IFFT processors based on radix-2and radix-4 architecture are designed. They have one butterfly processing unit. An efficient In-place memory assignment and addressing for the shared memory of FFT/IFFT processors are proposed to reduce the complexity of memory scheme. With "in-place" strategy, the outputs of butterfly operation are stored back to the same memory location of the inputs. Because of using DIF FFT, the output was to be in reverse order. To solve this issue, we have re-use the block RAM that used for storing the input sample as reordering unit to reduce hardware cost of the proposed processor. The Spartan-3E FPGA of 500,000 gates is employed to synthesize and implement the proposed architecture. The CORDIC based processors can save 40% of power consumption as compared with Xilinx logic core architectures of system generator.

Article
Autonomous Navigation of Mobile Robot Based on Flood Fill Algorithm

Ayad Mohammed Jabbar

Pages: 79-84

PDF Full Text
Abstract

The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.

Article
Transfer Learning Based Fine-Tuned Novel Approach for Detecting Facial Retouching

Kinjal R. Sheth, Vishal S. Vora

Pages: 84-94

PDF Full Text
Abstract

Facial retouching, also referred to as digital retouching, is the process of modifying or enhancing facial characteristics in digital images or photographs. While it can be a valuable technique for fixing flaws or achieving a desired visual appeal, it also gives rise to ethical considerations. This study involves categorizing genuine and retouched facial images from the standard ND-IIITD retouched faces dataset using a transfer learning methodology. The impact of different primary optimization algorithms—specifically Adam, RMSprop, and Adadelta—utilized in conjunction with a fine-tuned ResNet50 model is examined to assess potential enhancements in classification effectiveness. Our proposed transfer learning ResNet50 model demonstrates superior performance compared to other existing approaches, particularly when the RMSprop and Adam optimizers are employed in the fine-tuning process. By training the transfer learning ResNet50 model on the ND-IIITD retouched faces dataset with the ”ImageNet” weight, we achieve a validation accuracy of 98.76%, a training accuracy of 98.32%, and an overall accuracy of 98.52% for classifying real and retouched faces in just 20 epochs. Comparative analysis indicates that the choice of optimizer during the fine-tuning of the transfer learning ResNet50 model can further enhance the classification accuracy.

Article
Fair and Balance Demand Response application in Distribution Networks

Ibrahim H. Al-Kharsan, Ali.F. Marhoon, Jawad Radhi Mahmood

Pages: 139-151

PDF Full Text
Abstract

The unprogrammed penetration for the loads in the distribution networks make it work in an unbalancing situation that leads to unstable operation for those networks. the instability coming from the imbalance can cause many serious problems like the inefficient use of the feeders and the heat increased in the distribution transformers. The demands response can be regarded as a modern solution for the problem by offering a program to decreasing the consumption behavior for the program's participators in exchange for financial incentives in specific studied duration according to a direct order from the utility. The paper uses a new suggested algorithm to satisfy the direct load control demand response strategy that can be used in solving the unbalancing problem in distribution networks. The algorithm procedure has been simulated in MATLAB 2018 to real data collected from the smart meters that have been installed recently in Baghdad. The simulation results of applying the proposed algorithm on different cases of unbalancing showed that it is efficient in curing the unbalancing issue based on using the demand response strategy.

Article
Design of High-Secure Digital/Optical Double Color Image Encryption Assisted by 9D Chaos and DnCNN

Rusul Abdulridha Muttashar, Raad Sami Fyath

Pages: 165-181

PDF Full Text
Abstract

With the rapid development of multimedia technology, securing the transfer of images becomes an urgent matter. Therefore, designing a high-speed/secure system for color images is a real challenge. A nine-dimensional (9D) chaotic- based digital/optical encryption schem is proposed for double-color images in this paper. The scheme consists of cascaded digital and optical encryption parts. The nine chaotic sequences are grouped into three sets, where each set is responsible for encryption one of the RGB channels independently. One of them controls the fusion, XOR operation, and scrambling-based digital part. The other two sets are used for controlling the optical part by constructing two independent chaotic phase masks in the optical Fourier transforms domain. A denoising convolution neural network (DnCNN) is designed to enhance the robustness of the decrypted images against the Gaussian noise. The simulation results prove the robustness of the proposed scheme as the entropy factor reaches an average of 7.997 for the encrypted color lena-baboon images with an infinite peak signal-to-noise ratio (PSNR) for the decrypted images. The designed DnCNN operates efficiently with the proposed encryption scheme as it enhances the performance against the Gaussian noise, where the PSNR of the decrypted Lena image is enhanced from 27.01 dB to 32.56 dB after applying the DnCNN.

Article
Compensation of transmission channel effects in chaos synchronization

A. Buscarino, L. Fortuna, M. Frasca, G. Sciuto, M. T. Rashid

Pages: 83-87

PDF Full Text
Abstract

The synchronization of chaos is a well-known topic which attracted the attention of the scientific community in the last two decades. However, the robustness of the synchronous state has been not widely studied, especially considering real cases in which the effects introduced by the physical channel through which chaotic circuits interact, may deeply influence the quality of synchronization and even the onset of it. In this paper, the synchronization of two chaotic circuit coupled through a non– ideal channel is investigated. In particular, the effects of channels introducing a frequency–independent or frequency–dependent time–delay are investigated. Furthermore, two different design strategies to obtain a linear compensation block able to compen- sate the considered channel effects are presented and the recovery of the synchronous state is discussed.

Article
Wavelet-based Hybrid Learning Framework for Motor Imagery Classification

Z. T. Al-Qaysi, Ali Al-Saegh, Ahmed Faeq Hussein, M. A. Ahmed

Pages: 47-56

PDF Full Text
Abstract

Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the Amor mother wavelet function has outperformed the results of state-of-the-art studies.

1 - 58 of 58 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.