Page 161 - 2023-Vol19-Issue2
P. 161

157 |                                                             Mohammed, Oraibi & Hussain

[25] Z. Huang, R. Wang, S. Shan, and X. Chen, “Projection               “Mobilenets: Efficient convolutional neural net-
      metric learning on grassmann manifold with applica-               works for mobile vision applications,” arXiv preprint
      tion to video based face recognition,” in Proceedings             arXiv:1704.04861, 2017.
      of the IEEE conference on computer vision and pattern
      recognition, pp. 140–149, 2015.                             [36] A. Mahabub, M. I. Mahmud, and M. F. Hossain, “A
                                                                        robust system for message filtering using an ensemble
[26] A. L. Lafta and A. I. Abdulsada, “Privacy-preserve                 machine learning supervised approach,” ICIC Express
      content-based image retrieval using aggregated local              Letters, Part B: Applications, vol. 10, no. 9, pp. 805–811,
      features.,” Iraqi Journal for Electrical & Electronic En-         2019.
      gineering, vol. 18, no. 2, 2022.

[27] M. Karthikeyan and D. Raja, “Deep transfer learning en-
      abled densenet model for content based image retrieval
      in agricultural plant disease images,” Multimedia Tools
      and Applications, pp. 1–24, 2023.

[28] A. Mehbodniya, J. Webber, A. G. Devi, R. P. Somineni,
      M. C. Chinnaiah, A. Asokan, and K. S. Bhanu, “Content-
      based image recovery system with the aid of median
      binary design pattern.,” Traitement du Signal, vol. 40,
      no. 2, 2023.

[29] T. Gherbi, A. Zeggari, Z. A. Seghir, and F. Hachouf,
      “Entropy-guided assessment of image retrieval systems:
      Advancing grouped precision as an evaluation measure
      for relevant retrievability,” Informatica, vol. 47, no. 7,
      2023.

[30] G. K. Raju, P. Padmanabham, and A. Govardhan, “En-
      hanced content-based image retrieval with trio-deep fea-
      ture extractors with multi-similarity function.,” Inter-
      national Journal of Intelligent Engineering & Systems,
      vol. 15, no. 6, 2022.

[31] B. Sreenivasulu, A. Pasala, and G. Vasanth, “Adaptive
      inception based on transfer learning for effective visual
      recognition,” International Journal of Intelligent Engi-
      neering and Systems, vol. 13, no. 6, pp. 1–10, 2020.

[32] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis, “Learning
      fashion compatibility with bidirectional lstms,” in Pro-
      ceedings of the 25th ACM international conference on
      Multimedia, pp. 1078–1086, 2017.

[33] M. Yasmin, M. Sharif, and S. Mohsin, “Neural networks
      in medical imaging applications: A survey,” World Ap-
      plied Sciences Journal, vol. 22, no. 1, pp. 85–96, 2013.

[34] A. Jimenez, J. M. Alvarez, and X. Giro-i Nieto, “Class-
      weighted convolutional features for visual instance
      search,” arXiv preprint arXiv:1707.02581, 2017.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
      W. Wang, T. Weyand, M. Andreetto, and H. Adam,
   156   157   158   159   160   161   162   163   164   165   166