Page 161 - 2023-Vol19-Issue2
P. 161
157 | Mohammed, Oraibi & Hussain
[25] Z. Huang, R. Wang, S. Shan, and X. Chen, “Projection “Mobilenets: Efficient convolutional neural net-
metric learning on grassmann manifold with applica- works for mobile vision applications,” arXiv preprint
tion to video based face recognition,” in Proceedings arXiv:1704.04861, 2017.
of the IEEE conference on computer vision and pattern
recognition, pp. 140–149, 2015. [36] A. Mahabub, M. I. Mahmud, and M. F. Hossain, “A
robust system for message filtering using an ensemble
[26] A. L. Lafta and A. I. Abdulsada, “Privacy-preserve machine learning supervised approach,” ICIC Express
content-based image retrieval using aggregated local Letters, Part B: Applications, vol. 10, no. 9, pp. 805–811,
features.,” Iraqi Journal for Electrical & Electronic En- 2019.
gineering, vol. 18, no. 2, 2022.
[27] M. Karthikeyan and D. Raja, “Deep transfer learning en-
abled densenet model for content based image retrieval
in agricultural plant disease images,” Multimedia Tools
and Applications, pp. 1–24, 2023.
[28] A. Mehbodniya, J. Webber, A. G. Devi, R. P. Somineni,
M. C. Chinnaiah, A. Asokan, and K. S. Bhanu, “Content-
based image recovery system with the aid of median
binary design pattern.,” Traitement du Signal, vol. 40,
no. 2, 2023.
[29] T. Gherbi, A. Zeggari, Z. A. Seghir, and F. Hachouf,
“Entropy-guided assessment of image retrieval systems:
Advancing grouped precision as an evaluation measure
for relevant retrievability,” Informatica, vol. 47, no. 7,
2023.
[30] G. K. Raju, P. Padmanabham, and A. Govardhan, “En-
hanced content-based image retrieval with trio-deep fea-
ture extractors with multi-similarity function.,” Inter-
national Journal of Intelligent Engineering & Systems,
vol. 15, no. 6, 2022.
[31] B. Sreenivasulu, A. Pasala, and G. Vasanth, “Adaptive
inception based on transfer learning for effective visual
recognition,” International Journal of Intelligent Engi-
neering and Systems, vol. 13, no. 6, pp. 1–10, 2020.
[32] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis, “Learning
fashion compatibility with bidirectional lstms,” in Pro-
ceedings of the 25th ACM international conference on
Multimedia, pp. 1078–1086, 2017.
[33] M. Yasmin, M. Sharif, and S. Mohsin, “Neural networks
in medical imaging applications: A survey,” World Ap-
plied Sciences Journal, vol. 22, no. 1, pp. 85–96, 2013.
[34] A. Jimenez, J. M. Alvarez, and X. Giro-i Nieto, “Class-
weighted convolutional features for visual instance
search,” arXiv preprint arXiv:1707.02581, 2017.
[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,