Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for parallel

Article
Design and Implementation of a 3RRR Parallel Planar Robot

Ammar Aldair, Auday Al-Mayyahi, Zainab A. Khalaf, Chris Chatwin

Pages: 48-57

PDF Full Text
Abstract

Parallel manipulators have a rigid structure and can pick up the heavy objects. Therefore, a parallel manipulator has been developed based on the cooperative of three arms of a robotic system to make the whole system suitable for solving many problems such as materials handling and industrial automation. The three revolute joints are used to achieve the mechanism operation of the parallel planar robot. Those revolute joints are geometrically designed using an open-loop spatial robotic platform. In this paper, the geometric structure with three revolute joints is used to drive and analyze the inverse kinematic model for the 3RRR parallel planar robot. In the proposed design, three main variables are considered: the length of links of the 3RRR parallel planar robot, base positions of the platform, and joint angles’ geometry. Cayley-Menger determinants and bilateration are proposed to calculate these three variables to determine the final position of the platform and to move specific objects according to given desired trajectories. The proposed structure of the 3RRR parallel planar robot is simulated and different desired trajectories are tested to study the performance of the proposed stricter. Furthermore, the hardware implementation of the proposed structure is accomplished to validate the design in practical terms.

Article
Building A Control Unit of A Series-Parallel Hybrid Electric Vehicle by Using A Nonlinear Model Predictive Control (NMPC) Strategy

Maher Al-Flehawee, Auday Al-Mayyahi

Pages: 93-102

PDF Full Text
Abstract

Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management optimization problem, which consists of the cost function and its constraints. The cost function describes the required control objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's energy converters, which are represented by the torque of the vehicle components.

Article
ANALYSIS AND CONTROL DESIGN OF PARALLEL PWM DC/DC BUCK CONVERTER

Asaad S. Alsheraidah, Sabah S. Alsheraidah

Pages: 54-61

PDF Full Text
Abstract

This paper presents a proposed configuration of paralleling scheme PWM DC/DC buck converter. The topological structure and operation principles are presented. A Bode plot diagram technique is used to study the stability of the scheme for different values of controller parameters and with a number of parallel modules. It is found that the results are confidence, and the proposed scheme can be used in high power applications by increasing the number of parallel modules.

Article
Series and Parallel Arc Fault Detection Based on Discrete Wavelet vs. FFT Techniques

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. Khudair

Pages: 38-47

PDF Full Text
Abstract

Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.

Article
Fairness Analysis in the Assessment of Several Online Parallel Classes using Process Mining

Rachmadita Andreswari, Ismail Syahputra

Pages: 25-34

PDF Full Text
Abstract

The learning process in online lectures through the Learning Management System (LMS) will produce a learning flow according to the event log. Assessment in a group of parallel classes is expected to produce the same assessment point of view based on the semester lesson plan. However, it does not rule out the implementation of each class to produce unequal fairness. Some of the factors considered to influence the assessment in the classroom include the flow of learning, different lecturers, class composition, time and type of assessment, and student attendance. The implementation of process mining in fairness assessment is used to determine the extent to which the learning flow plays a role in the assessment of ten parallel classes, including international classes. Moreover, a decision tree algorithm will also be applied to determine the root cause of the student assessment analysis based on the causal factors. As a result, there are three variables that have effects on student graduation and assessment, i.e attendance, class and gender. Variable lecturer does not have much impact on the assessment, but has an influence on the learning flow.

Article
Optical Parallel Scalable High Speed 2D Data Array TSD Adder

Sabah S. Alsheraidah, Alaa A. W. Al-Saffar, Mohmmed A. A. Al-Ebbady

Pages: 11-20

PDF Full Text
Abstract

In this paper, optical scalable parallel and high-speed 2D data array adder for trinary signed-digit (TSD) number is proposed. The digit-decomposition-plane (DDP) coding method is used to represent the 2D TSD data arrays. The algorithm performs parallel TSD addition in constant time independent of the size of the TSD data arrays. The design describes methodology to involve two-step TSD adder. The TSD addition is expressed with several combination logic formulas that are newly derived. Optical implementation with classical optical elements is suggested for proposed TSD adder. Preliminary demonstration example is also described.

Article
Series and Parallel Arc Fault Detection in Electrical Buildings Based on Discrete Wavelet Theory

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. K. Al-Atbee

Pages: 94-101

PDF Full Text
Abstract

Electrical issues such as old wires and faulty connections are the most common causes of arc faults. Arc faults cause electrical fires by generating high temperatures and discharging molten metal. Every year, such fires cause a considerable deal of destruction and loss. This paper proposes a new method for detecting residential series and parallel arc faults. A simulation model for the arc is employed to simulate the arc faults in series and parallel circuits. The fault features are then retrieved using a signal processing approach called Discrete Wavelet Transform (DWT) designed in MATLAB/Simulink based on the fault detection algorithm. Then db2 and one level were found appropriate mother and level of wavelet transform for extracting arc-fault features. MATLAB Simulink was used to build and simulate the arc-fault model.

Article
Multi-Pulse Diode Rectifier for More-Electric Aircraft Applications: Parallel versus Series Topologies

Ahmed A. A. Hafez, Ali M. Yousef

Pages: 138-144

PDF Full Text
Abstract

This article analyzes thoroughly the performance of the Multi-Pulse Diode Rectifiers (MPDRs) regarding the quality of input/output voltage and currents. Two possible arrangements of MPDRs are investigated: series and parallel. The impact of the DC side connection on the performance of the MPDRs regarding the operation parameters and rectifier indices are comprehensively examined. Detailed analytical formulas are advised to identify clearly the key variables that control the operation of MPDRs. Moreover, comprehensive simulation results are presented to quantify the performance and validate the analytical analysis. Test-rig is set up to recognize the promising arrangement of MPDRs. Significant correlation is there between simulation and practical results. The analytical results are presented for aircraft systems (400Hz), and power grid systems (60Hz). This is to study the impact of voltage and frequency levels on the topology type of MPDRs. In general, each topology shows merits and have limitations.

Article
Optical Parallel Quaternary Signed Digit Multiplier For Large Scale Two-Dimensional Array Using Digit-Decomposition Plane Representation

Alaa A. W. Al-Saffar

Pages: 21-32

PDF Full Text
Abstract

An optical parallel quaternary signed digit (QSD) two-dimensional array multiplier based on digit-decomposition (DDP) representation and duplication-shifting-superimposing algorithm is proposed in this paper. The multiplication operation is done in three steps; one for partial products generation and the other two steps perform accumulation to find the DDP planes of the final result array. QSD multiplication and addition rules are used to obtain a newly derived equations which are suitable for easy optical implementation using basic optical tools. Finally, simulation results are presented to validate the successful of the multiplication operation.

Article
Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

Wissam H. Al-Mutar, Turki Y. Abdalla

Pages: 151-158

PDF Full Text
Abstract

The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller I. I NTRODUCTION Suspensions systems can be classified into three types are (passive, simi active and active). Figs. 1, 2 and 3 below shows the three types of Quarter car suspension system and hydraulic actuator position in each type.[1] Fig. 1 Passive Quarter Car Model Fig. 2 Simi-Active Quarter Car Model Fig. 3 Active Quarter Car Model In passive suspension systems the main parts are springs and hydraulic dumpers. The main job of these dumpers is to decrease the road profile and vibration effects into driver and passenger’s cabin. In active suspension system there are three parts under spring mass (body of car), spring, dumper and hydraulic actuator are connected in parallel. In this paper an additional parts is added to passive suspension system in parallel with springs and dumpers called a hydraulic actuator to get an active suspension system. This hydraulic actuator is a nonlinear part and it is controlled by spool valve. The mechanism of this actuator is to decrease the road profile and vibration from passive suspension system to get more comfortable riding. By using PID controller trained by Particle Swarm Optimization (PSO) to find optimal values of proportional, divertive and Quarter Car Active Suspension System Control Using PID Controller tuned by PSO Wissam H. Al-Mutar Turki Y. Abdalla Electrical Eng. Computer Eng. University of Basrah University of Basrah Basrah. Iraq. Basrah. Iraq. Spring Mass Unpring Mass K Kt C Ct Spring Mass Unpring K K C C Spring Mass Unpring Mass K Kt C F Ct اﻟﻤﺠﻠﺔ اﻟﻌﺮاﻗﻴﺔ ﻟﻠﻬﻨﺪﺳﺔ اﻟﻜﻬﺮﺑﺎﺋﻴﺔ واﻻﻟﻜﺘﺮوﻧﻴﺔ Iraq J. Electrical and Electronic Engineering ﻡﺠﻠﺪ 11 ، اﻟﻌﺪد 2 ، 2015 Vol.11 No.2 , 2015 Active suspension, PSO, PID controller, quarter car

Article
Matlab/Simulink Modeling of Parallel Resonant DC Link Soft-Switching Four-leg SVPWM Inverter

Riyadh G. Omar, Rabee' H. Thejel

Pages: 70-82

PDF Full Text
Abstract

This paper suggests the use of the traditional parallel resonant dc link (PRDCL) circuit to give soft switching to the Four-leg Space Vector Pulse Width Modulation (SVPWM) inverter. The proposed circuit provides a short period of zero voltage across the inverter during the zero-vectors occurrence. The transition between the zero and active vectors accomplished with zero- voltage condition (ZVC), this reduces the switching losses. Moreover, the inverter output voltage Total Harmonic Distortion (THD) not affected by circuit operation, since the zero voltage periods occur simultaneously with zero-vector periods. To confirm the results, balanced and unbalanced loads are used. Matlab/Simulink model implemented for simulation.

Article
Parallel Search Using Probabilistic DNA Sticker Model to Cryptanyze One Time Pad Polyalphabetic Cipher

Basim Sahar Yaseen

Pages: 104-110

PDF Full Text
Abstract

Nowadays, it is difficult to imagine a powerful algorithm of cryptography that can continue cryptanalyzing and attacking without the use of unconventional techniques. Although some of the substitution algorithms are old, such as Vigen`ere, Alberti, and Trithemius ciphers, they are considered powerful and cannot be broken. In this paper we produce the novelty algorithm, by using of biological computation as an unconventional search tool combined with an uninhibited analysis method is the vertical probabilistic model, that makes attacking and analyzing these ciphers possible and very easy to transform the problem from a complex to a linear one, which is a novelty achievement. The letters of the encoded message are processed in the form of segments of equal length, to report the available hardware components. Each letter codon represents a region of the memory strand, and the letters calculated for it are symbolized within the probabilistic model so that each pair has a triple encoding: the first is given as a memory strand encoding and the others are its complement in the sticker encoding; These encodings differ from one region to another. The solution space is calculated and then the parallel search process begins. Some memory complexities are excluded even though they are within the solution paths formed, because the natural language does not contain its sequences. The precision of the solution and the time consuming of access to it depend on the length of the processed text, and the precision of the solution is often inversely proportional to the speed of access to it. As an average of the time spent to reach the solution, a text with a length of 200 cipher characters needs approximately 15 minutes to give 98% of the correct components of the specific hardware. The aim of the paper is to transform OTP substitution analysis from a NP problem to a O(nm) problem, which makes it easier to find solutions to it easily with the available capabilities and to develop methods that are harnessed to attack difficult and powerful ciphers that differ in class and type from the OTP polyalphabetic substitution ciphers.

Article
Control Strategy for a PV-BESS-SC Hybrid System in Islanded Microgrid

Ali Almousawi, Ammar A. Aldair

Pages: 1-11

PDF Full Text
Abstract

In this paper, a control strategy for a combination PV-BESS-SC hybrid system in islanded microgrid with a DC load is designed and analyzed using a new topology. Although Battery Energy Storage System (BESS) is employed to keep the DC bus voltage stable; however, it has a high energy density and a low power density. On the other hand, the Supercapacitor (SC) has a low energy density but a high-power density. As a result, combining a BESS and an SC is more efficient for power density and high energy. Integrating the many sources is more complicated. In order to integrate the SC and BESS and deliver continuous power to the load, a control strategy is required. A novel method for controlling the bus voltage and energy management will be proposed in this paper. The main advantage of the proposed system is that throughout the operation, the State of Charging (SOC), BESS current, and SC voltage and current are all kept within predetermined ranges. Additionally, SC balances fast- changing power surges, while BESS balances slow-changing power surges. Therefore, it enhances the life span and minimizes the current strains on BESS. To track the Maximum Power Point (MPP) or restrict power from the PV panel to the load, a unidirectional boost converter is utilized. Two buck converters coupled in parallel with a boost converter are proposed to charge the hybrid BESS-SC. Another two boost converters are used to manage the discharge operation of the BESS-SC storage in order to reduce losses. The simulation results show that the proposed control technique for rapid changes in load demand and PV generation is effective. In addition, the proposed technique control strategy is compared with a traditional control strategy.

Article
Design and Implementation of Fuzzy Logic system for DC motor Speed Control

Dr. Maan M. Shaker, Yaareb M.B. Ismeal Al-khashab

Pages: 123-130

PDF Full Text
Abstract

In this paper an integrated electronic system has been designed, constructed and tested. The system utilizes an interface card through the parallel port in addition to some auxiliary circuits to perform fuzzy control operations for DC motor speed control with load and no load. Software is written using (C++ language Ver. 3.1) to display the image as control panel for different types of both conventional and fuzzy control. The main task of the software is to simulate: first, how to find out the correct parameters for fuzzy logic controller (membership’s function, rules and scaling factor). Second, how to evaluate the gain factors (K P , K I and K D ) by Ziegler-Nichols method. When executing any type of control process the efficiency is estimated by drawing the relative speed response for this control.

Article
FPGA Based Modified Fuzzy PID Controller for Pitch Angle of Bench-top Helicopter

Ammar A. Aldair

Pages: 12-24

PDF Full Text
Abstract

Fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. To reduce the huge number of fuzzy rules required in the normal design for fuzzy PID controller, the fuzzy PID controller is represented as Proportional-Derivative Fuzzy (PDF) controller and Proportional-Integral Fuzzy (PIF) controller connected in parallel through a summer. The PIF controller design has been simplified by replacing the PIF controller by PDF controller with accumulating output. In this paper, the modified Fuzzy PID controller design for bench-top helicopter has been presented. The proposed Fuzzy PID controller has been described using Very High Speed Integrated Circuit Hardware Description Language (VHDL) and implemented using the Field Programmable Gate Array (FPGA) board. The bench-top helicopter has been used to test the proposed controller. The results have been compared with the conventional PID controller and Internal Model Control Tuned PID (IMC-PID) Controller. Simulation results show that the modified Fuzzy PID controller produces superior control performance than the other two controllers in handling the nonlinearity of the helicopter system. The output signal from the FPGA board is compared with the output of the modified Fuzzy PID controller to show that the FPGA board works like the Fuzzy PID controller. The result shows that the plant responses with the FPGA board are much similar to the plant responses when using simulation software based controller.

Article
Theoretical Study in the Realization of Real-Time Parallel Optical Logic Operations Using Two-Wave Mixing in Photorefractive Materials

R.S. Fyath, J.M. Abdul-Jabbar, S.M. Ameen

Pages: 15-29

PDF Full Text
Abstract

A theoretical analysis is presented to calculate the signal phase shift and the gain coefficient associated with two-wave mixing in photorefractive crystals subjected to an external electric field. The relative position of the induced-refractive index grating with respect to the fringe pattern of the two input optical beams leads to a coupling effect between the phase and intensity of these beams. An optical logic operation system that is based on photorefractive two-wave mixing is introduced. This system uses the fringe-shifting techniques that are executed by a Mach-Zehnder interferometer. The proposed system configurations are capable of producing all the basic 16 two-operand Boolean functions simultaneously at different output planes.

Article
Speed Control of BLDC Motor Based on Recurrent Wavelet Neural Network

Adel A. Obed, Ameer L. Saleh

Pages: 118-129

PDF Full Text
Abstract

In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.

1 - 17 of 17 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.