Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for identification

Article
Identification and Control of Impressed Current Cathodic Protection System

Bassim N. Abdul Sada, Ramzy S. Ali, Khearia A. Mohammed Ali

Pages: 214-220

PDF Full Text
Abstract

In this paper the identification and control for the impressed current cathodic protection (ICCP) system are present. Firstly, an identification model using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) was implemented. The identification model consists of four inputs which are the aeration flow rates, the temperature, conductivity, and protection current, and one output that represented by the structure-to-electrolyte potential. The used data taken from an experimental CP system model, type impressed current submerged sample pipe carbon steel. Secondly, two control techniques are used. The first control technique use a conventional Proportional-Integral-Derivative (PID) controller, while the second is the fuzzy controller. The PID controller can be applied to control ICCP system and quite easy to implement. But, it required very fine tuning of its parameters based on the desired value. Furthermore, it needed time response more than fuzzy controller to track reference voltage. So the fuzzy controller has a faster and better response.

Article
Parameter Identification of a PMSG Using a PSO Algorithm Based on Experimental Tests

A. J. Mahdi, W. H. Tang, Q. H. Wu

Pages: 39-44

PDF Full Text
Abstract

An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.

Article
Centralized approach for multi-node localization and identification

Ola A. Hasan, Ramzy S. Ali, Abdulmuttalib T. Rashid

Pages: 178-187

PDF Full Text
Abstract

A new algorithm for the localization and identification of multi-node systems has been introduced in this paper; this algorithm is based on the idea of using a beacon provided with a distance sensor and IR sensor to calculate the location and to know the identity of each visible node during scanning. Furthermore, the beacon is fixed at middle of the frame bottom edge for a better vision of nodes. Any detected node will start to communicate with the neighboring nodes by using the IR sensors distributed on its perimeter; that information will be used later for the localization of invisible nodes. The performance of this algorithm is shown by the implementation of several simulations .

Article
FINGERPRINTS IDENTIFICATION USING NEUROFUZZY SYSTEM

Emad S. Jabber, Maytham A. Shahed

Pages: 89-102

PDF Full Text
Abstract

This paper deals with NeuroFuzzy System (NFS), which is used for fingerprint identification to determine a person's identity. Each fingerprint is represented by 8 bits/pixel grayscale image acquired by a scanner device. Many operations are performed on input image to present it on NFS, this operations are: image enhancement from noisy or distorted fingerprint image input and scaling the image to a suitable size presenting the maximum value for the pixel in grayscale image which represent the inputs for the NFS. For the NFS, it is trained on a set of fingerprints and tested on another set of fingerprints to illustrate its efficiency in identifying new fingerprints. The results proved that the NFS is an effective and simple method, but there are many factors that affect the efficiency of NFS learning and it has been noticed that the changing one of this factors affects the NFS results. These affecting factors are: number of training samples for each person, type and number of membership functions, and the type of fingerprint image that used.

Article
License Plate Detection and Recognition in Unconstrained Environment Using Deep Learning

Heba Hakim, Zaineb Alhakeem, Hanadi Al-Musawi, Mohammed A. Al-Ibadi, Alaa Al-Ibadi

Pages: 210-220

PDF Full Text
Abstract

Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.

Article
ANFIS Modelling of Flexible Plate Structure

A. A. M. Al-Khafaji, I. Z. Mat Darus, M. F. Jamid

Pages: 78-82

PDF Full Text
Abstract

This paper presented an investigation into the performance of system identification using an Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for the dynamic modelling of a two- dimensional flexible plate structure. It is confirmed experimentally, using National Instrumentation (NI) Data Acquisition System (DAQ) and flexible plate test rig that ANFIS can be effectively used for modelling the system with highly accurate results. The accuracy of the modelling results is demonstrated through validation tests including training and test validation and correlation tests.

Article
Group Key Management Protocols for Non-Network: A Survey

Rituraj Jain, Dr. Manish Varshney

Pages: 214-225

PDF Full Text
Abstract

The phenomenal rise of the Internet in recent years, as well as the expansion of capacity in today’s networks, have provided both inspiration and incentive for the development of new services that combine phone, video, and text ”over IP.” Although unicast communications have been prevalent in the past, there is an increasing demand for multicast communications from both Internet Service Providers (ISPs) and content or media providers and distributors. Indeed, multicasting is increasingly being used as a green verbal exchange mechanism for institution-oriented programmers on the Internet, such as video conferencing, interactive college games, video on demand (VoD), TV over the Internet, e-learning, software programme updates, database replication, and broadcasting inventory charges. However, the lack of security within the multicast verbal exchange model prevents the effective and large-scale adoption of such important company multi-celebration activities. This situation prompted a slew of research projects that addressed a variety of issues related to multicast security, including confidentiality, authentication, watermarking, and access control. These issues should be viewed within the context of the safety regulations that work in the specific conditions. For example, in a public inventory charge broadcast, while identification is a vital necessity, secrecy is not. In contrast, video-convention programme requires both identification and confidentiality. This study gives a complete examination and comparison of the issues of group key management. Both network-dependent and network-independent approaches are used. The study also addresses the advantages, disadvantages, and security problems of various protocols.

Article
Online Genetic-Fuzzy Forward Controller for a Robot Arm

Prof Dr. Abduladeem A. Ali, Amal J. Kudaer

Pages: 60-73

PDF Full Text
Abstract

The robot is a repeated task plant. The control of such a plant under parameter variations and load disturbances is one of the important problems. The aim of this work is to design Genetic-Fuzzy controller suitable for online applications to control single link rigid robot arm plant. The genetic-fuzzy online controller (forward controller) contains two parts, an identifier part and model reference controller part. The identification is based on forward identification technique. The proposed controller it tested in normal and load disturbance conditions.

Article
CONDENSER AND DEAERATOR CONTROL USING FUZZY-NEURAL TECHNIQUE

Prof. Dr. Abduladhem A. Ali, A'ayad Sh. Mohammed

Pages: 79-96

PDF Full Text
Abstract

A model reference adaptive control of condenser and deaerator of steam power plant is presented. A fuzzy-neural identification is constructed as an integral part of the fuzzy-neural controller. Both forward and inverse identification is presented. In the controller implementation, the indirect controller with propagating the error through the fuzzy-neural identifier based on Back Propagating Through Time (BPTT) learning algorithm as well as inverse control structure are proposed. Simulation results are achieved using Multi Input-Multi output (MIMO) type of fuzzy-neural network. Robustness of the plant is detected by including several tests and observations.

Article
NEUROFUZZY CONTROL STRUCTURE FOR A ROBOT MANIPULATOR

Dr. Turki Y. Abdalla, Ammar A. Abduihmeed

Pages: 19-31

PDF Full Text
Abstract

In this paper a neurofuzzy control structure is presented and used for controlling the two-link robot manipulator. A neurofuzzy networks are constructed for both the controller and for identification model of robot manipulator. The performance of the proposed structure is studied by simulation. Different operating conditions are considered. Results of simulation show good performance for the proposed control structure.

Article
Second-Order Statistical Methods GLCM for Authentication Systems

Mohammed A. Taha, Hanaa M. Ahmed

Pages: 88-93

PDF Full Text
Abstract

For many uses, biometric systems have gained considerable attention. Iris identification was One of the most powerful sophisticated biometrical techniques for effective and confident authentication. The current iris identification system offers accurate and reliable results based on near-infrared light (NIR) images when images are taken in a restricted area with fixed- distance user cooperation. However, for the color eye images obtained under visible wavelength (VW) without collaboration among the users, the efficiency of iris recognition degrades because of noise such as eye blurring images, eye lashing, occlusion, and reflection. This work aims to use the Gray-Level Co-occurrence Matrix (GLCM) to retrieve the iris's characteristics in both NIR iris images and visible spectrum. GLCM is second-order Statistical-Based Methods for Texture Analysis. The GLCM- based extraction technology was applied after the preprocessing method to extract the pure iris region's characteristics. The Energy, Entropy, Correlation, Homogeneity, and Contrast collection of second-order statistical features are determined from the generated co-occurrence matrix, Stored as a vector for numerical features. This approach is used and evaluated on the CASIA v1and ITTD v1 databases as NIR iris image and UBIRIS v1 as a color image. The results showed a high accuracy rate (99.2 %) on CASIA v1, (99.4) on ITTD v1, and (87%) on UBIRIS v1 evaluated by comparing to the other methods.

Article
Design a Compact Coplanar Wideband Antenna Used in Radio Frequency Identification Systems

Sufyan Hazaa Ali, Ahmed Hameed Reja, Yousif Azzawi Hachim

Pages: 134-138

PDF Full Text
Abstract

In this paper, a new compact coplanar antenna used for Radio frequency identification (FID) applications is presented. This antenna is operated at the resonant frequency of 2.45 GHz. The proposed antenna is designed on an epoxy substrate material type (FR-4) with small size of (40 × 28) mm2 in which the dielectric thickness (h) of 1.6 mm, relative permittivity (er) of 4.3 and tangent loss of 0.025. In this design the return loss is less than −10 dB in the frequency interval (2.12 − 2.84) GHz and the minimum value of return loss is -32 dB at resonant frequency. The maximum gain of the proposed antenna is 1.22 dB and the maximum directivity obtained is 2.27 dB. The patch and the ground plane of the proposed antenna are in the same surface. The proposed antenna has a wide bandwidth and omnidirectional radiation pattern with small size. The overall size of the compact antenna is (40 × 28 × 1.635) mm3. The Computer Simulation Technology (CST) microwave studio software is used for simulation and gets layout design.

Article
Design and Implementation of PID Controller for the Cooling Tower’s pH Regulation Based on Particle Swarm Optimization PSO Algorithm

Basim Al-Najari, Chong Kok Hen, Johnny Koh Siaw Paw, Ali Fadhil Marhoon

Pages: 59-67

PDF Full Text
Abstract

The PH regulation of cooling tower plant in southern fertilizers company (SCF) in Iraq is important for industry pipes protection and process continuity. According to the Mitsubishi standard, the PH of cooling water must be around (7.1 to 7.8). The deviation in PH parameter affects the pipes, such as corrosion and scale. Acidic water causes pipes to corrode, and alkaline water causes pipes to scale. The sulfuric acid solution is used for PH neutralization. The problem is that the sulfuric acid is pumped manually in the cooling tower plant every two or three hours for PH regulation. The manual operation of the sulfuric acid pump makes deviations in the PH parameter. It is very difficult to control the PH manually. To solve this problem, a PID controller for PH regulation was used. The reason for using the PID controller is that the PH response is irregular through the neutralization process. The methodology is to calculate the transfer function of the PH loop using the system identification toolbox of MATLAB, to design and implement a PID controller, to optimize the PID controller response using particle swarm optimization PSO algorithm, and to make a comparison among several tuning methods such as Ziegler Nichols (ZN) tuning method, MATLAB tuner method, and PSO algorithm tuning method. The results showed that the PSO-based PID controller tuning gives a better overshoot, less rise time, and an endurable settling time than the other tuning methods. Hence, the PH response became according to the target range. The experimental results showed that the PH regulation improved using the PSO-based PID controller tuning.

Article
Design and Implementation of RFID Active Tags and Mutual Authentication Protocol with Ownership Transfer Stage

Issam A. Hussein, Ramzy S. Ali, Basil H. Jasim

Pages: 83-103

PDF Full Text
Abstract

Radio frequency identification (RFID) technology is being used widely in the last few years. Its applications classifies into auto identification and data capturing issues. The purpose of this paper is to design and implement RFID active tags and reader using microcontroller ATmega328 and 433 MHz RF links. The paper also includes a proposed mutual authentication protocol between RFID reader and active tags with ownership transfer stage. Our protocol is a mutual authentication protocol with tag’s identifier updating mechanism. The updating mechanism has the purpose of providing forward security which is important in any authentication protocol to prevent the attackers from tracking the past transactions of the compromised tags. The proposed protocol gives the privacy and security against all famous attacks that RFID system subjected for due to the transfer of data through unsecure wireless channel, such as replay, denial of service, tracking and cloning attacks. It also ensures ownership privacy when the ownership of the tag moves to a new owner.

Article
Short Circuit Faults Identification and Localization in IEEE 34 Nodes Distribution Feeder Based on the Theory of Wavelets

Sara J. Authafa, Khalid M. Abdul-Hassan

Pages: 65-79

PDF Full Text
Abstract

In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.

Article
A Comparison of COIVD-19 Cases Classification Based on Machine Learning Approaches

Oqbah Salim Atiyah, Saadi Hamad Thalij

Pages: 139-143

PDF Full Text
Abstract

COVID-19 emerged in 2019 in china, the worldwide spread rapidly, and caused many injuries and deaths among humans. Accurate and early detection of COVID-19 can ensure the long-term survival of patients and help prohibit the spread of the epidemic. COVID-19 case classification techniques help health organizations quickly identify and treat severe cases. Algorithms of classification are one the essential matters for forecasting and making decisions to assist the diagnosis, early identification of COVID-19, and specify cases that require to intensive care unit to deliver the treatment at appropriate timing. This paper is intended to compare algorithms of classification of machine learning to diagnose COVID-19 cases and measure their performance with many metrics, and measure mislabeling (false-positive and false-negative) to specify the best algorithms for speed and accuracy diagnosis. In this paper, we focus onto classify the cases of COVID-19 using the algorithms of machine learning. we load the dataset and perform dataset preparation, pre-processing, analysis of data, selection of features, split of data, and use of classification algorithm. In the first using four classification algorithms, (Stochastic Gradient Descent, Logistic Regression, Random Forest, Naive Bayes), the outcome of algorithms accuracy respectively was 99.61%, 94.82% ,98.37%,96.57%, and the result of execution time for algorithms respectively were 0.01s, 0.7s, 0.20s, 0.04. The Stochastic Gradient Descent of mislabeling was better. Second, using four classification algorithms, (eXtreme-Gradient Boosting, Decision Tree, Support Vector Machines, K_Nearest Neighbors), the outcome of algorithms accuracy was 98.37%, 99%, 97%, 88.4%, and the result of execution time for algorithms respectively were 0.18s, 0.02s, 0.3s, 0.01s. The Decision Tree of mislabeling was better. Using machine learning helps improve allocate medical resources to maximize their utilization. Classification algorithm of clinical data for confirmed COVID-19 cases can help predict a patient's need to advance to the ICU or not need by using a global dataset of COVID-19 cases due to its accuracy and quality.

Article
Secure Patient Authentication Scheme in the Healthcare System Using Symmetric Encryption

Naba M. Hamed, Ali A. Yassin

Pages: 71-81

PDF Full Text
Abstract

Recently, the incorporation of state-of-the-art technology such as Electronic Healthcare Records (EHRs), networks, and cloud computing has transformed the traditional healthcare system. However, security problems have arisen as a result of the integration of technology. Secure remote user authentication is a core part of the healthcare system to validate the user's identification via an unsecure communication network. Since then, several remote user authentication schemes have been presented, each with its own set of pros and limitations. As a result, security, malicious attacks and privacy concerns are considered one of the main challenges related to the healthcare system. In this paper, we propose a safe user authentication scheme for patients in the healthcare system that overcomes these flaws and confirms the security of the proposed work using scyther, a formal security tool. In the healthcare environment, our work provides an effective means to construct an environment capable of setting, registering, storing, searching, analyzing, authentication, and verifying electronic healthcare information in order to protect the information of patients. Furthermore, our suggested scheme uses symmetric encryption based on the crypto- hash function for accessing the anomaly of the patient's identity and One-Time Password (OTP). Towards the end of the study, the performance analysis results indicate a delicate balance of security and performance that is frequently lacking in previous works.

Article
NNMF with Speaker Clustering in a Uniform Filter-Bank for Blind Speech Separation

Ruaa N. Ismael, Hasan M. Kadhim

Pages: 111-121

PDF Full Text
Abstract

This study proposes a blind speech separation algorithm that employs a single-channel technique. The algorithm’s input signal is a segment of a mixture of speech for two speakers. At first, filter bank analysis transforms the input from time to time-frequency domain (spectrogram). Number of sub-bands for the filter is 257. Non-Negative Matrix Factorization (NNMF) factorizes each sub-band output into 28 sub-signals. A binary mask separates each sub-signal into two groups; one group belongs to the first speaker and the other to the second speaker. The binary mask separates each sub-signal of the (257×28) 7196 sub-speech signals. That separation cannot identify the speaker. Identification of the sub-signal speaker for each sub-signal is achieved by speaker clustering algorithms. Since speaker clustering cannot process without speaker segmentation, the standard windowed-overlap frames have been used to partition the speech. The speaker clustering process fetches the extracted phase angle from the spectrogram (of the mixture speech) and merges it into the spectrogram (of the recovered speech). Filter bank synthesizes these signals to produce a full-band speech signal for each speaker. Subjective tests denote that the algorithm results are accepted. Objectively, the researchers experimented with 66 mixture chats (6 females and 6 males) to test the algorithm. The average of the SIR test is 11.1 dB, SDR is 1.7 dB, and SAR is 2.8 dB.

Article
Color Image Hiding In Cover Speech Signal By Using Multi-resolution Discrete Wavelet Transform

Lecturer Dr. Samir J.AL- Muraab, Asst. lecturer Haider I. AL-Mayaly

Pages: 28-37

PDF Full Text
Abstract

Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, security, and copyright. The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. Digital audio provides a suitable cover for high-throughput steganography. In this paper a high robustness system against the attackers in hiding of color images is presented. We used the multi-resolution discrete wavelet transform in hiding process. The JPEG format type for color images and WAV format for speech cover signal that used in test of system. Programs and graphics are executed by using MATLAB version 6.5 programs.

Article
Interactive Real-Time Control System for The Artificial Hand

Hanadi Abbas Jaber, Mofeed Turky Rashid, Luigi Fortuna

Pages: 62-71

PDF Full Text
Abstract

In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) signals have been employed for hand gesture identification, in which the performance of the classification process can be improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as (HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand.

Article
Face Recognition-Based Automatic Attendance System in a Smart Classroom

Ahmad S. Lateef, Mohammed Y. Kamil

Pages: 37-47

PDF Full Text
Abstract

The smart classroom is a fully automated classroom where repetitive tasks, including attendance registration, are automatically performed. Due to recent advances in artificial intelligence, traditional attendance registration methods have become challenging. These methods require significant time and effort to complete the process. Therefore, researchers have sought alternative ways to accomplish attendance registration. These methods include identification cards, radio frequency, or biometric systems. However, all of these methods have faced challenges in safety, accuracy, effort, time, and cost. The development of digital image processing techniques, specifically face recognition technology, has enabled automated attendance registration. Face recognition technology is considered the most suitable for this process due to its ability to recognize multiple faces simultaneously. This study developed an integrated attendance registration system based on the YOLOv7 algorithm, which extracts features and recognizes students’ faces using a specially collected database of 31 students from Mustansiriyah University. A comparative study was conducted by applying the YOLOv7 algorithm, a machine learning algorithm, and a combined machine learning and deep learning algorithm. The proposed method achieved an accuracy of up to 100%. A comparison with previous studies demonstrated that the proposed method is promising and reliable for automating attendance registration.

Article
Identification of RBC and WBC Count in Human Blood Using ARM Based Instrumentation

B.Dodda Basavanagoud, Dr. K Padma Priya

Pages: 145-150

PDF Full Text
Abstract

The rapid growth in microelectronics and crunching RISC in the field of bio-medical sciences incorporated of soft tools to diagnose various parameters of human fluids. Conventional method of blood sample analysis makes use of laboratory technique of titration, which is operator-dependent and results in lot of errors depending on the skill of the technician. In order to eliminate the human errors involved in the conventional method, in this paper an attempt has been made to present a capillary centrifuge technique driven by high speed DC motor fed by Morgan chopper and controlled by powerful ARM processor. It results in accurate analysis of the blood samples. The various techniques involved in accurate sensing of speed using timer and generation of firing pulses to thyristor in the Morgan chopper is judiciously achieved. This paper clearly brings out the advantages of the proposed blood measurement technique which effectively gives blood analysis faster and at a low cost.

Article
Practical Implementation of an Indoor Robot Localization and Identification System using an Array of Anchor Nodes

Israa Sabri A. AL-Forati, Abdulmuttalib T. Rashid

Pages: 9-16

PDF Full Text
Abstract

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi- robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.

Article
Privacy Issues in Vehicular Ad-hoc Networks: A Review

Zahra K. Farhood, Ali A. Abed, Sarah Al-Shareeda

Pages: 25-36

PDF Full Text
Abstract

Vehicle Ad-hoc Network (VANET) is a type of wireless network that enables communication between vehicles and Road Side Units (RSUs) to improve road safety, traffic efficiency, and service delivery. However, the widespread use of vehicular networks raises serious concerns about users’ privacy and security. Privacy in VANET refers to the protection of personal information and data exchanged between vehicles, RSUs, and other entities. Privacy issues in VANET include unauthorized access to location and speed information, driver and passenger identification, and vehicle tracking. To ensure privacy in VANET, various technologies such as pseudonymization, message authentication, and encryption are employed. When vehicles frequently change their identity to avoid tracking, message authentication ensures messages are received from trusted sources, and encryption is used to prevent unauthorized access to messages. Therefore, researchers have presented various schemes to improve and enhance the privacy efficiency of vehicle networks. This survey article provides an overview of privacy issues as well as an in-depth review of the current state-of-the-art pseudonym-changing tactics and methodologies proposed.

Article
Off-line Signature Recognition Using Weightless Neural Network and Feature Extraction

Ali Al-Saegh

Pages: 124-131

PDF Full Text
Abstract

The problem of automatic signature recognition and verification has been extensively investigated due to the vitality of this field of research. Handwritten signatures are broadly used in daily life as a secure way for personal identification. In this paper a novel approach is proposed for handwritten signature recognition in an off-line environment based on Weightless Neural Network (WNN) and feature extraction. This type of neural networks (NN) is characterized by its simplicity in design and implementation. Whereas no weights, transfer functions and multipliers are required. Implementing the WNN needs only Random Access Memory (RAM) slices. Moreover, the whole process of training can be accomplished with few numbers of training samples and by presenting them once to the neural network. Employing the proposed approach in signature recognition area yields promising results with rates of 99.67% and 99.55% for recognition of signatures that the network has trained on and rejection of signatures that the network has not trained on, respectively.

Article
Parameter Estimation of a Permanent Magnetic DC Motor

Murtadha L. Awoda, Ramzy S. Ali

Pages: 28-36

PDF Full Text
Abstract

The identification of system parameters plays an essential role in system modeling and control. This paper presents a parameter estimation for a permanent magnetic DC motor using the simulink design optimization method. The parameter estimation may be represented as an optimization problem. Firstly, the initial values of the DC motor parameters are extracted using the dynamic model through measuring the values of voltage, current, and speed of the motor. Then, these values are used as an initial value for simulink design optimization. The experimentally input- output data can be collected using a suggested microcontroller based circuit that will be used later for estimating the DC motor parameters by building a simulink model. Two optimization algorithms are used, the pattern search and the nonlinear least square. The results show that the nonlinear least square algorithm gives a more accurate result that almost approaches to the actual measured speed response of the motor. )

Article
Detection of Covid-19 Based on Chest Medical Imaging and Artificial Intelligent Techniques: A Review

Nawres Aref, Hussain Kareem

Pages: 176-182

PDF Full Text
Abstract

Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.

Article
Speed Control of BLDC Motor Based on Recurrent Wavelet Neural Network

Adel A. Obed, Ameer L. Saleh

Pages: 118-129

PDF Full Text
Abstract

In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.

Article
A Dataset for Kinship Estimation from Image of Hand Using Machine Learning

Sarah Ibrahim Fathi, Mazin H. Aziz

Pages: 127-136

PDF Full Text
Abstract

Kinship (Familial relationships) detection is crucial in many fields and has applications in biometric security, adoption, forensic investigations, and more. It is also essential during wars and natural disasters like earthquakes since it may aid in reunion, missing person searches, establishing emergency contacts, and providing psychological support. The most common method of determining kinship is DNA analysis which is highly accurate. Another approach, which is noninvasive, uses facial photos with computer vision and machine learning algorithms for kinship estimation. Each part of the Human -body has its own embedded information that can be extracted and adopted for identification, verification, or classification of that person. Kinship recognition is based on finding traits that are shared by every family. We investigate the use of hand geometry for kinship detection, which is a new approach. Because of the available hand image Datasets do not contain kinship ground truth; therefore, we created our own dataset. This paper describes the tools, methodology, and details of the collected MKH, which stands for the Mosul Kinship Hand, images dataset. The images of MKH dataset were collected using a mobile phone camera with a suitable setup and consisted of 648 images for 81 individuals from 14 families (8 hand situations per person). This paper also presents the use of this dataset in kinship prediction using machine learning. Google MdiaPipe was used for hand detection, segmentation, and geometrical key points finding. Handcraft feature extraction was used to extract 43 distinctive geometrical features from each image. A neural network classifier was designed and trained to predict kinship, yielding about 93% prediction accuracy. The results of this novel approach demonstrated that the hand possesses biometric characteristics that may be used to establish kinship, and that the suggested method is a promising way as a kinship indicator.

Article
Mobile Robot Navigation with Obstacles Avoidance by Witch of Agnesi Algorithm with Minimum Power

Bayadir A. Issa, Hayder D. Almukhtar, Qabeela Q. Thabit, Mofeed T. Rashid

Pages: 199-209

PDF Full Text
Abstract

Obstacle avoidance in mobile robot path planning represents an exciting field of robotics systems. There are numerous algorithms available, each with its own set of features. In this paper a Witch of Agnesi curve algorithm is proposed to prevent a collision by the mobile robot’s orientation beyond the obstacles which represents an important problem in path planning, further, to achieve a minimum arrival time by following the shortest path which leads to minimizing power loss. The proposed approach considers the mobile robot’s platform equipped with the LIDAR 360o sensor to detect obstacle positions in any environment of the mobile robot. Obstacles detected in the sensing range of the mobile robot are dealt with by using the Witch of Agnesi curve algorithm, this establishes the obstacle’s apparent vertices’ virtual minimum bounding circle with minimum error. Several Scenarios are implemented and considered based on the identification of obstacles in the mobile robot environment. The proposed system has been simulated by the V-REP platform by designing several scenarios that emulate the behavior of the robot during the path planning model. The simulation and experimental results show the optimal performance of the mobile robot during navigation is obtained as compared to the other methods with minimum power loss and also with minimum error. It’s given 96.3 percent in terms of the average of the total path while the Bezier algorithm gave 94.67 percent. While in experimental results the proposed algorithm gave 93.45 and the Bezier algorithm gave 92.19 percent.

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

Article
Comparison of Complex-Valued Independent Component Analysis Algorithms for EEG Data

Ali Al-Saegh

Pages: 1-12

PDF Full Text
Abstract

Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex- valued ICA algorithm. In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain activity and not to artifact activity. The performance of locating a dipole for each separated independent component is considered in the comparison as well. Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain.

Article
Variable Speed Controller of Wind Generation System using Model predictive Control and NARMA Controller

Raheel Jawad, Majda Ahmed, Hussein M. Salih, Yasser Ahmed Mahmood

Pages: 43-52

PDF Full Text
Abstract

This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.

Article
Weakest Bus Identification Based on Modal Analysis and Singular Value Decomposition Techniques

M. K. Jalboub, H. S. Rajamani, R.A. Abd-Alhameed, A. M. Ihbal

Pages: 157-162

PDF Full Text
Abstract

Voltage instability problems in power system is an important issue that should be taken into consideration during the planning and operation stages of modern power system networks. The system operators always need to know when and where the voltage stability problem can occur in order to apply suitable action to avoid unexpected results. In this paper, a study has been conducted to identify the weakest bus in the power system based on multi-variable control, modal analysis, and Singular Value Decomposition (SVD) techniques for both static and dynamic voltage stability analysis. A typical IEEE 3- machine, 9-bus test power system is used to validate these techniques, for which the test results are presented and discussed.

1 - 34 of 34 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.