Page 278 - 2024-Vol20-Issue2
P. 278

274 |                                                                  Qadir, Abdalla & Abd

[20] A. Churcher and et al., “An experimental analysis of                    Materials Science and Engineering, vol. 928, p. 022035,
      attack classification using machine learning in iot net-               IOP Publishing, 2020.
      works,” Sensors, vol. 21, no. 2, p. 446, 2021.
                                                                       [32] Y. S. Ismael, M. Y. Shakor, and P. A. Abdalla, “Deep
[21] H. Alyasriy and A. Muayed, “The iq-othnccd lung can-                    learning based real-time face recognition system,” Neu-
      cer dataset,” Mendeley Data, vol. 1, p. 2020, 2021.                    roQuantology, vol. 20, no. 6, pp. 7355–7366, 2022.

[22] C. I. Henschke, D. F. Yankelevitz, R. Mirtcheva,
      G. McGuinness, D. McCauley, and O. S. Miettinen, “Ct
      screening for lung cancer: frequency and significance of
      part-solid and nonsolid nodules,” American Journal of
      Roentgenology, vol. 178, no. 5, pp. 1053–1057, 2002.

[23] R. Smith-Bindman and et al., “Trends in use of medical
      imaging in us health care systems and in ontario, canada,
      2000-2016,” Jama, vol. 322, no. 9, pp. 843–856, 2019.

[24] S. Prusty, S. Patnaik, and S. K. Dash, “Skcv: Stratified
      k-fold cross-validation on ml classifiers for predicting
      cervical cancer,” Frontiers in Nanotechnology, vol. 4,
      p. 972421, 2022.

[25] K. Simonyan and A. Zisserman, “Very deep convolu-
      tional networks for large-scale image recognition,” arXiv
      preprint arXiv:, 2014.

[26] J. Pardede, B. Sitohang, S. Akbar, and M. L. Khodra,
      “Implementation of transfer learning using vgg16 on
      fruit ripeness detection,” Int. J. Intell. Syst. Appl, vol. 13,
      no. 2, pp. 52–61, 2021.

[27] A. M. Qadir, P. A. Abdalla, and M. I. Ghareb, “Malaria
      parasite identification from red blood cell images using
      transfer learning models,” Passer Journal of Basic and
      Applied Sciences, vol. 4, no. Special issue, pp. 63–79,
      2022.

[28] R. Kumar and S. Geetha, “Malware classification us-
      ing xgboost-gradient boosted decision tree,” Adv. Sci.
      Technol. Eng. Syst, vol. 5, pp. 536–549, 2020.

[29] M. S. Al-Huseiny and A. S. Sajit, “Transfer learning
      with googlenet for detection of lung cancer,” Indone-
      sian Journal of Electrical Engineering and Computer
      Science, vol. 22, no. 2, pp. 1078–1086, 2021.

[30] H. F. Kareem, M. S. AL-Husieny, F. Y. Mohsen, E. A.
      Khalil, and Z. S. Hassan, “Evaluation of svm perfor-
      mance in the detection of lung cancer in marked ct scan
      dataset,” Indonesian Journal of Electrical Engineering
      and Computer Science, vol. 21, no. 3, p. 1731, 2021.

[31] H. F. Al-Yasriy, M. S. Al-Husieny, F. Y. Mohsen, E. A.
      Khalil, and Z. S. Hassan, “Diagnosis of lung cancer
      based on ct scans using cnn,” in IOP Conference Series:
   273   274   275   276   277   278   279   280   281   282   283