Page 245 - 2024-Vol20-Issue2
P. 245

241 |                                                              Ahmed, Alsaif & Algwari

              CONFLICT OF INTEREST                                 [10] S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado,
                                                                         H. Assender, A. Watt, and I. Sellers, “Defect mediated
The authors have declared no conflict of interest.                       extraction in inas/gaas quantum dot solar cells,” Solar
                                                                         energy materials and solar cells, vol. 102, pp. 142–147,
                     REFERENCES                                          2012.

 [1] Z. Zhao, Optical Characterization of InAs/GaAs 1-x Sb         [11] N. Beattie, G. Zoppi, P. See, I. Farrer, M. Duchamp,
      x Quantum-Dot Structures. University of California, Los            D. Morrison, R. Miles, and D. Ritchie, “Analysis of
      Angeles, 2018.                                                     inas/gaas quantum dot solar cells using suns-voc mea-
                                                                         surements,” Solar energy materials and solar cells,
 [2] U. Aeberhard, “Simulation of nanostructure-based high-              vol. 130, pp. 241–245, 2014.
      efficiency solar cells: challenges, existing approaches,
      and future directions,” IEEE journal of selected topics      [12] K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa,
      in quantum electronics, vol. 19, no. 5, pp. 1–11, 2013.            “High-efficiency inas/gaas quantum dot solar cells
                                                                         by metalorganic chemical vapor deposition,” Applied
 [3] L. Madani, “Numerical simulation of inas/gaas quantum               Physics Letters, vol. 100, no. 19, 2012.
      well and quantum dots solar cells,” 2019.
                                                                   [13] F. Benyettou, A. Aissat, M. Benamar, and J. Vilcot,
 [4] A. Luque and A. Mart´i, “Increasing the efficiency of               “Modeling and simulation of gasb/gaas quantum dot for
      ideal solar cells by photon induced transitions at inter-          solar cell,” Energy Procedia, vol. 74, pp. 139–147, 2015.
      mediate levels,” Physical review letters, vol. 78, no. 26,
      p. 5014, 1997.                                               [14] D. Chettri, T. J. Singh, and K. J. Singh, “Inas/gaas quan-
                                                                         tum dot solar cell,” International Journal of Electron-
 [5] A. Mart´i, E. Antol´in, C. Stanley, C. Farmer, N. Lo´pez,           ics, Electrical and Computational System, vol. 6, no. 3,
      P. D´iaz, E. Ca´novas, P. Linares, and A. Luque, “Produc-          pp. 221–224, 2017.
      tion of photocurrent due to intermediate-to-conduction-
      band transitions: A demonstration of a key operating         [15] V. Aroutiounian, S. Petrosyan, A. Khachatryan, and
      principle of the intermediate-band solar cell,” Physical           K. Touryan, “Quantum dot solar cells,” Journal of Ap-
      Review Letters, vol. 97, no. 24, p. 247701, 2006.                  plied Physics, vol. 89, no. 4, pp. 2268–2271, 2001.

 [6] A. Scaccabarozzi, S. Adorno, S. Bietti, M. Acciarri, and      [16] K. Tvrdy and P. Kamat, “Quantum dot solar cells,” Com-
      S. Sanguinetti, “Evidence of two-photon absorption in              prehensive nanoscience and technology, vol. 1, pp. 257–
      strain-free quantum dot gaas/algaas solar cells,” physica          275, 2011.
      status solidi (RRL)–Rapid Research Letters, vol. 7, no. 3,
      pp. 173–176, 2013.                                           [17] A. I. Fedoseyev, M. Turowski, A. Raman, Q. Shao, and
                                                                         A. A. Balandin, “Multiscale models of quantum dot
 [7] R. Tamaki, Y. Shoji, Y. Okada, and K. Miyano, “Spec-                based nanomaterials and nanodevices for solar cells,” in
      trally resolved interband and intraband transitions by             Computational Science–ICCS 2008: 8th International
      two-step photon absorption in ingaas/gaas quantum dot              Conference, Krako´w, Poland, June 23-25, 2008, Pro-
      solar cells,” IEEE Journal of Photovoltaics, vol. 5, no. 1,        ceedings, Part II 8, pp. 242–250, Springer, 2008.
      pp. 229–233, 2014.
                                                                   [18] T. Aihara, T. Tayagaki, Y. Nagato, Y. Okano, and T. Sug-
 [8] T. Nozawa, H. Takagi, K. Watanabe, and Y. Arakawa,                  aya, “Design and characterization of ingap-based inp
      “Direct observation of two-step photon absorption in               quantum dot solar cells,” Japanese Journal of Applied
      an inas/gaas single quantum dot for the operation of               Physics, vol. 57, no. 8S3, p. 08RF04, 2018.
      intermediate-band solar cells,” Nano Letters, vol. 15,
      no. 7, pp. 4483–4487, 2015.                                  [19] A. Nasr and A. E.-M. M. Aly, “Performance evaluation
                                                                         of quantum-dot intermediate-band solar cells,” Journal
 [9] B. Mu¨ller, L. Hardt, A. Armbruster, K. Kiefer, and                 of Electronic Materials, vol. 45, pp. 672–681, 2016.
      C. Reise, “Yield predictions for photovoltaic power
      plants: empirical validation, recent advances and remain-    [20] C. G. Bailey, D. V. Forbes, S. J. Polly, Z. S. Bittner,
      ing uncertainties,” Progress in Photovoltaics: Research            Y. Dai, C. Mackos, R. P. Raffaelle, and S. M. Hub-
      and Applications, vol. 24, no. 4, pp. 570–583, 2016.               bard, “Open-circuit voltage improvement of inas/gaas
                                                                         quantum-dot solar cells using reduced inas coverage,”
                                                                         IEEE Journal of Photovoltaics, vol. 2, no. 3, pp. 269–
                                                                         275, 2012.
   240   241   242   243   244   245   246   247   248   249   250