Page 245 - 2024-Vol20-Issue2
P. 245
241 | Ahmed, Alsaif & Algwari
CONFLICT OF INTEREST [10] S. Willis, J. Dimmock, F. Tutu, H. Liu, M. Peinado,
H. Assender, A. Watt, and I. Sellers, “Defect mediated
The authors have declared no conflict of interest. extraction in inas/gaas quantum dot solar cells,” Solar
energy materials and solar cells, vol. 102, pp. 142–147,
REFERENCES 2012.
[1] Z. Zhao, Optical Characterization of InAs/GaAs 1-x Sb [11] N. Beattie, G. Zoppi, P. See, I. Farrer, M. Duchamp,
x Quantum-Dot Structures. University of California, Los D. Morrison, R. Miles, and D. Ritchie, “Analysis of
Angeles, 2018. inas/gaas quantum dot solar cells using suns-voc mea-
surements,” Solar energy materials and solar cells,
[2] U. Aeberhard, “Simulation of nanostructure-based high- vol. 130, pp. 241–245, 2014.
efficiency solar cells: challenges, existing approaches,
and future directions,” IEEE journal of selected topics [12] K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa,
in quantum electronics, vol. 19, no. 5, pp. 1–11, 2013. “High-efficiency inas/gaas quantum dot solar cells
by metalorganic chemical vapor deposition,” Applied
[3] L. Madani, “Numerical simulation of inas/gaas quantum Physics Letters, vol. 100, no. 19, 2012.
well and quantum dots solar cells,” 2019.
[13] F. Benyettou, A. Aissat, M. Benamar, and J. Vilcot,
[4] A. Luque and A. Mart´i, “Increasing the efficiency of “Modeling and simulation of gasb/gaas quantum dot for
ideal solar cells by photon induced transitions at inter- solar cell,” Energy Procedia, vol. 74, pp. 139–147, 2015.
mediate levels,” Physical review letters, vol. 78, no. 26,
p. 5014, 1997. [14] D. Chettri, T. J. Singh, and K. J. Singh, “Inas/gaas quan-
tum dot solar cell,” International Journal of Electron-
[5] A. Mart´i, E. Antol´in, C. Stanley, C. Farmer, N. Lo´pez, ics, Electrical and Computational System, vol. 6, no. 3,
P. D´iaz, E. Ca´novas, P. Linares, and A. Luque, “Produc- pp. 221–224, 2017.
tion of photocurrent due to intermediate-to-conduction-
band transitions: A demonstration of a key operating [15] V. Aroutiounian, S. Petrosyan, A. Khachatryan, and
principle of the intermediate-band solar cell,” Physical K. Touryan, “Quantum dot solar cells,” Journal of Ap-
Review Letters, vol. 97, no. 24, p. 247701, 2006. plied Physics, vol. 89, no. 4, pp. 2268–2271, 2001.
[6] A. Scaccabarozzi, S. Adorno, S. Bietti, M. Acciarri, and [16] K. Tvrdy and P. Kamat, “Quantum dot solar cells,” Com-
S. Sanguinetti, “Evidence of two-photon absorption in prehensive nanoscience and technology, vol. 1, pp. 257–
strain-free quantum dot gaas/algaas solar cells,” physica 275, 2011.
status solidi (RRL)–Rapid Research Letters, vol. 7, no. 3,
pp. 173–176, 2013. [17] A. I. Fedoseyev, M. Turowski, A. Raman, Q. Shao, and
A. A. Balandin, “Multiscale models of quantum dot
[7] R. Tamaki, Y. Shoji, Y. Okada, and K. Miyano, “Spec- based nanomaterials and nanodevices for solar cells,” in
trally resolved interband and intraband transitions by Computational Science–ICCS 2008: 8th International
two-step photon absorption in ingaas/gaas quantum dot Conference, Krako´w, Poland, June 23-25, 2008, Pro-
solar cells,” IEEE Journal of Photovoltaics, vol. 5, no. 1, ceedings, Part II 8, pp. 242–250, Springer, 2008.
pp. 229–233, 2014.
[18] T. Aihara, T. Tayagaki, Y. Nagato, Y. Okano, and T. Sug-
[8] T. Nozawa, H. Takagi, K. Watanabe, and Y. Arakawa, aya, “Design and characterization of ingap-based inp
“Direct observation of two-step photon absorption in quantum dot solar cells,” Japanese Journal of Applied
an inas/gaas single quantum dot for the operation of Physics, vol. 57, no. 8S3, p. 08RF04, 2018.
intermediate-band solar cells,” Nano Letters, vol. 15,
no. 7, pp. 4483–4487, 2015. [19] A. Nasr and A. E.-M. M. Aly, “Performance evaluation
of quantum-dot intermediate-band solar cells,” Journal
[9] B. Mu¨ller, L. Hardt, A. Armbruster, K. Kiefer, and of Electronic Materials, vol. 45, pp. 672–681, 2016.
C. Reise, “Yield predictions for photovoltaic power
plants: empirical validation, recent advances and remain- [20] C. G. Bailey, D. V. Forbes, S. J. Polly, Z. S. Bittner,
ing uncertainties,” Progress in Photovoltaics: Research Y. Dai, C. Mackos, R. P. Raffaelle, and S. M. Hub-
and Applications, vol. 24, no. 4, pp. 570–583, 2016. bard, “Open-circuit voltage improvement of inas/gaas
quantum-dot solar cells using reduced inas coverage,”
IEEE Journal of Photovoltaics, vol. 2, no. 3, pp. 269–
275, 2012.