Page 128 - 2024-Vol20-Issue2
P. 128
124 | Assim & Mahmood
Rouhl, C. A. van Donselaar, M. H. Majoie, R. F. Visser, M. Eisermann, et al., “Standardized computer-
Neuteboom, P. A. Sillevis Smitt, et al., “Evalua- based organized reporting of eeg: Score–second version,”
tion of seizure treatment in anti-lgi1, anti-nmdar, and Clinical Neurophysiology, vol. 128, no. 11, pp. 2334–
anti-gababr encephalitis,” Neurology, vol. 92, no. 19, 2346, 2017.
pp. e2185–e2196, 2019.
[15] S. W. Roberson, P. Shah, V. Piai, H. Gatens, A. M.
[6] S. S. Abdulwahab, H. K. Khleaf, M. H. Jassim, and Krieger, T. H. Lucas II, and B. Litt, “Electrocorticogra-
S. Abdulwahab, “A systematic review of brain-computer phy reveals spatiotemporal neuronal activation patterns
interface based eeg,” Iraqi J. Electr. Electron. Eng, of verbal fluency in patients with epilepsy,” Neuropsy-
vol. 16, no. 2, pp. 1–10, 2020. chologia, vol. 141, p. 107386, 2020.
[7] A. Shoeibi, M. Khodatars, N. Ghassemi, M. Ja- [16] S. Abdulwahab, H. Khleaf, and M. Jassim, “Eeg motor-
fari, P. Moridian, R. Alizadehsani, M. Panahiazar, imagery bci system based on maximum overlap discrete
F. Khozeimeh, A. Zare, H. Hosseini-Nejad, et al., wavelet transform (modwt) and machine learning al-
“Epileptic seizures detection using deep learning tech- gorithm,” Iraqi Journal for Electrical and Electronic
niques: A review,” International Journal of Environmen- Engineering, vol. 17, no. 2, pp. 38–45, 2021.
tal Research and Public Health, vol. 18, no. 11, p. 5780,
2021. [17] R. Bandopadhyay, T. Singh, M. M. Ghoneim, S. Al-
shehri, E. Angelopoulou, Y. N. Paudel, C. Piperi, J. Ah-
[8] A. Omidvarnia, M. A. Kowalczyk, M. Pedersen, and mad, N. A. Alhakamy, M. A. Alfaleh, et al., “Re-
G. D. Jackson, “Towards fast and reliable simultane- cent developments in diagnosis of epilepsy: scope of
ous eeg-fmri analysis of epilepsy with automatic spike microrna and technological advancements,” Biology,
detection,” Clinical Neurophysiology, vol. 130, no. 3, vol. 10, no. 11, p. 1097, 2021.
pp. 368–378, 2019.
[18] A. S. Konar, A. D. Shah, R. Paudyal, M. Fung, S. Baner-
[9] I. S. Al-Furati and A. I. AL-Mayoof, “Design and im- jee, A. Dave, V. Hatzoglou, and A. Shukla-Dave, “Quan-
plementation of an injury detection system for corona titative synthetic magnetic resonance imaging for brain
tracker,” Iraqi Journal for Electrical And Electronic En- metastases: a feasibility study,” Cancers, vol. 14, no. 11,
gineering, vol. 18, no. 2, 2022. p. 2651, 2022.
[10] P. Thangavel, J. Thomas, N. Sinha, W. Y. Peh, R. Yu- [19] H. Ode´en and D. L. Parker, “Magnetic resonance ther-
varaj, S. S. Cash, R. Chaudhari, S. Karia, J. Jing, mometry and its biological applications–physical princi-
R. Rathakrishnan, et al., “Improving automated diag- ples and practical considerations,” Progress in nuclear
nosis of epilepsy from eegs beyond ieds,” Journal of magnetic resonance spectroscopy, vol. 110, pp. 34–61,
Neural Engineering, vol. 19, no. 6, p. 066017, 2022. 2019.
[11] M. Liu, B. Liu, Z. Ye, and D. Wu, “Bibliometric analysis [20] B. Heim, S. Mangesius, F. Krismer, G. K. Wenning,
of electroencephalogram research in mild cognitive im- A. Hussl, C. Scherfler, E. R. Gizewski, M. Schocke,
pairment from 2005 to 2022,” Frontiers in Neuroscience, R. Esterhammer, A. Quattrone, et al., “Diagnostic accu-
vol. 17, p. 1128851, 2023. racy of mr planimetry in clinically unclassifiable parkin-
sonism,” Parkinsonism & Related Disorders, vol. 82,
[12] H. B. Hawsawi, P. J. Allen, T. Warbrick, R. Sto¨rmer, pp. 87–91, 2021.
G. Iannotti, F. Grouiller, S. Vulliemoz, and L. Lemieux,
“Eeg instrumentation and safety in the mri environment,” [21] A. Z. Atiyah and K. H. Ali, “Brain mri images seg-
in EEG-fMRI: Physiological Basis, Technique, and Ap- mentation based on u-net architecture,” IJEEE Journal,
plications, pp. 141–166, Springer, 2023. pp. 21–27, 2021.
[13] G. A. Buzzell, Y. Niu, S. Aviyente, and E. Bernat, “A [22] J.-G. Yoo, D. Jakabek, H. Ljung, D. Velakoulis, D. van
practical introduction to eeg time-frequency principal Westen, J. C. Looi, and K. Ka¨lle´n, “Mri morphology
components analysis (tf-pca),” Developmental Cognitive of the hippocampus in drug-resistant temporal lobe
Neuroscience, vol. 55, p. 101114, 2022. epilepsy: Shape inflation of left hippocampus and cor-
relation of right-sided hippocampal volume and shape
[14] S. Beniczky, H. Aurlien, J. C. Brøgger, L. J. Hirsch, D. L. with visuospatial function in patients with right-sided
Schomer, E. Trinka, R. M. Pressler, R. Wennberg, G. H. tle,” Journal of Clinical Neuroscience, vol. 67, pp. 68–
74, 2019.