Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for routing

Article
New Energy Efficient Routing Protocol in Wireless Sensor Networks Using Firefly Algorithm

Safaa Khudair Leabi

Pages: 1-7

PDF Full Text
Abstract

Energy constraint has become the major challenge for designing wireless sensor networks. Network lifetime is considered as the most substantial metric in these networks. Routing technique is one of the best choices for maintaining network lifetime. This paper demonstrates implementation of new methodology of routing in WSN using firefly swarm intelligence. Energy consumption is the dominant issue in wireless sensor networks routing. For network cutoff avoidance while maximize net lifetime energy exhaustion must be balanced. Balancing energy consumption is the key feature for rising nets lifetime of WSNs. This routing technique involves determination of optimal route from node toward sink to make energy exhaustion balance in network and in the same time maximize network throughput and lifetime. The proposed technique show that it is better than other some routing techniques like Dijkstra routing, Fuzzy routing, and ant colony (ACO) routing technique. Results demonstrate that the proposed routing technique has beat the three routing techniques in throughput and extend net lifetime.

Article
Enhancing Packet Reliability in Wireless Multimedia Sensor Networks using a Proposed Distributed Dynamic Cooperative Protocol (DDCP) Routing Algorithm

Hanadi Al-Jabry, Hamid Ali Abed Al-Asadi

Pages: 158-168

PDF Full Text
Abstract

Wireless Multimedia Sensor Networks (WMSNs) are being extensively utilized in critical applications such as envi- ronmental monitoring, surveillance, and healthcare, where the reliable transmission of packets is indispensable for seamless network operation. To address this requirement, this work presents a pioneering Distributed Dynamic Coop- eration Protocol (DDCP) routing algorithm. The DDCP algorithm aims to enhance packet reliability in WMSNs by prioritizing reliable packet delivery, improving packet delivery rates, minimizing end-to-end delay, and optimizing energy consumption. To evaluate its performance, the proposed algorithm is compared against traditional routing protocols like Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR), as well as proactive routing protocols such as Optimized Link State Routing (OLSR). By dynamically adjusting the transmission range and selecting optimal paths through cooperative interactions with neighboring nodes, the DDCP algorithm offers effective solutions. Extensive simulations and experiments conducted on a wireless multimedia sensor node testbed demonstrate the superior performance of the DDCP routing algorithm compared to AODV, DSR, and OLSR, in terms of packet delivery rate, end-to-end delay, and energy efficiency. The comprehensive evaluation of the DDCP algorithm against multiple routing protocols provides valuable insights into its effectiveness and efficiency in improving packet reliability within WMSNs. Furthermore, the scalability and applicability of the proposed DDCP algorithm for large-scale wireless multimedia sensor networks are confirmed. In summary, the DDCP algorithm exhibits significant potential to enhance the performance of WMSNs, making it a suitable choice for a wide range of applications that demand robust and reliable data transmission.

Article
Modified ECMP Routing Using Adapted Cost Disjoint Multiple Paths ACDMP

Abbas A. Jasim

Pages: 202-207

PDF Full Text
Abstract

Computer network routing is performed based on routing protocol decisions. Open Shortest Path First OSPF is the most known routing protocol. It suffers from congestion problem since it generally uses single (least cost) path to deliver information. Some times OSPF delivers information using more than one path in the case of more than one path have the same cost value. This condition is rarely achieved in normal cases. In this work OSPF is developed to distribute information load across multiple paths and makes load distribution as general case for the routing protocol. The modification supposes no protocol replacement and uses the existing protocol facilities. This makes faster information delivery, load balancing, less congestion, and with little modification on the built in OSPF functions. Disjoint paths are calculated then the costs of the best set of them are adapted using approporate ratio.

Article
Design, Simulation, and Performance Evaluation of Reactive and Proactive Ad-Hoc Routing Protocols

Salah Abdulghani Alabady, Abdulhameed Nabeel Hameed

Pages: 1-15

PDF Full Text
Abstract

The primary goal of this study is to investigate and evaluate the performance of wireless Ad-Hoc routing protocols using the OPNET simulation tool, as well as to recommend the most effective routing strategies for the wireless mesh environment. Investigations have been testified to analyze the performance of the reactive and proactive Ad-Hoc routing protocols in different scenarios. Application and wireless metrics were configured that were used to test and evaluate the performance of routing protocols. The application metric includes web browsing metrics such as HTTP page response time, voice and video metrics such as end-to-end delay, and delay variation. The wireless network metrics include wireless media access delay, data dropped, wireless load, wireless retransmission attempts, and Packet Delivery Ratio. The simulations results show that the AODV overcome DSR and OLSR in terms of PDR (76%), wireless load (22.692 Mbps), voice delay variation (102.685 ms), HTTP page response time (15.317 sec), voice and video packet end-to-end delay (206.527 and 25.294 ms), wireless media access delay (90.150 ms), data dropped (10.003 Mbps), wireless load (22.692 Mbps), and wireless retransmission attempts (0.392 packets).

Article
Improvement of AODV Routing on MANETS Using Fuzzy Systems

Taqwa Odey Fahad, Prof. Abduladhim A. Ali

Pages: 102-106

PDF Full Text
Abstract

Most of routing protocols used for Mobile Ad hoc Network (MANET), such as Ad hoc on demand distance vector (AODV) routing, uses minimum hops as the only metric for choosing a route. This decision might lead to cause some nodes become congested which will degrade the network performance. This paper proposes an improvement of AODV routing algorithm by making routing decisions depend on fuzzy cost based on the delay in conjunction with number of hops in each path. Our simulation was carried out using OMNET++ 4.0 simulator and the evaluation results show that the proposed Fuzzy Multi-Constraint AODV routing performs better than the original AODV in terms of average end-to-end delay and packet delivery.

Article
Strategies for Enhancing the Performance of (RPL) Protocol

Rana H. Hussain

Pages: 198-203

PDF Full Text
Abstract

Wireless sensor networks have many limitations such as power, bandwidth, and memory, which make the routing process very complicated. In this research, a wireless sensor network containing three moving sink nodes is studied according to four network scenarios. These scenarios differ in the number of sensor nodes in the network. The RPL (Routing Protocol for low power and lossy network) protocol was chosen as the actual routing protocol for the network based on some routing standards by using the Wsnet emulator. This research aims to increase the life of the network by varying the number of nodes forming it. By using different primitive energy of these nodes, this gives the network to continue working for the longest possible period with low and fair energy consumption between the nodes. In this work, the protocol was modified to make the sink node move to a specific node according to the node’s weight, which depends on the number of neighbors of this node, the number of hops from this node to the sink node, the remaining energy in this node, and the number of packets generated in this node. The simulation process of the RPL protocol showed good results and lower energy consumption compared to previous researches.

Article
Fuzzy Transmission Power Control Scheme for Maximizing Lifetime in Wireless Sensor Networks

Safaa Khudair Leabi, Turki Younis Abdalla

Pages: 174-182

PDF Full Text
Abstract

Energy limitations have become fundamental challenge for designing WSNs. Network lifetime is the most interested and important metric in WSNs. Many works have been developed for prolonging networks lifetime, in which one of the important work is the control of transmission power. This paper proposes a new fuzzy transmission power control technique that operate together with routing protocols for prolonging WSNs lifetime. Dijkstra shortest path routing is considered as the main routing protocol in this work. This paper mainly focuses on transmission power control scheme for prolonging WSNs lifetime. A performance comparison is depicted for maximum and controlled transmission power. Simulation results show an increase in network lifetime equals to 3.4776 for the proposed fuzzy control. The performance of the proposed fuzzy control technique involves a good improvement and contribution in the field of prolonging networks lifetime by using transmission power control.

Article
A Simulation of AODV and GPSR Routing Protocols in VANET Based on Multimetrices

Israa A. Aljabry, Ghaida A. Al-Suhail

Pages: 66-72

PDF Full Text
Abstract

Vehicular Ad hoc Networks (VANETs), a subsection of Mobile Ad hoc Networks (MANETs), have strong future application prospects. Because topology structures are rapidly changing, determining a route that can guarantee a good Quality of Service (QoS) is a critical issue in VANETs. Routing is a critical component that must be addressed in order to utilize effective communication among vehicles. The purpose obtained from this study is to compare the AODV and GPSR performance in terms of Packet Delivery Ratio, Packet Drop Ratio, Throughput, and End-to-End Delay by applying three scenarios, the first scenario focuses on studying these protocols in terms of QoS while changing the number of vehicles at a constant speed of 40Km/h, and for the second scenario changing the speed value while keeping a constant number of vehicles which is 100, the third involves changing the communication range at a constant speed and vehicle number. This study represents a foundation for researchers to help elaborate on the strength and weaknesses of these two protocols. OMNeT++ in conjunction with SUMO is used for simulation.

Article
E-FLEACH: An Improved Fuzzy Based Clustering Protocol for Wireless Sensor Network

Enaam A. Al-Husain, Ghaida A. Al-Suhail

Pages: 190-197

PDF Full Text
Abstract

Clustering is one of the most energy-efficient techniques for extending the lifetime of wireless sensor networks (WSNs). In a clustered WSN, each sensor node transmits the data acquired from the sensing field to the leader node (cluster head). The cluster head (CH) is in charge of aggregating and routing the collected data to the Base station (BS) of the deployed network. Thereby, the selection of the optimum CH is still a crucial issue to reduce the consumed energy in each node and extend the network lifetime. To determine the optimal number of CHs, this paper proposes an Enhanced Fuzzy-based LEACH (E-FLEACH) protocol based on the Fuzzy Logic Controller (FLC). The FLC system relies on three inputs: the residual energy of each node, the distance of each node from the base station (sink node), as well as the node's centrality. The proposed protocol is implemented using the Castalia simulator in conjunction with OMNET++, and simulation results indicate that the proposed protocol outperforms the traditional LEACH protocol in terms of network lifetime, energy consumption, and stability.

1 - 9 of 9 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.