Cover
Vol. 17 No. 2 (2021)

Published: December 31, 2021

Pages: 66-72

Original Article

A Simulation of AODV and GPSR Routing Protocols in VANET Based on Multimetrices

Abstract

Vehicular Ad hoc Networks (VANETs), a subsection of Mobile Ad hoc Networks (MANETs), have strong future application prospects. Because topology structures are rapidly changing, determining a route that can guarantee a good Quality of Service (QoS) is a critical issue in VANETs. Routing is a critical component that must be addressed in order to utilize effective communication among vehicles. The purpose obtained from this study is to compare the AODV and GPSR performance in terms of Packet Delivery Ratio, Packet Drop Ratio, Throughput, and End-to-End Delay by applying three scenarios, the first scenario focuses on studying these protocols in terms of QoS while changing the number of vehicles at a constant speed of 40Km/h, and for the second scenario changing the speed value while keeping a constant number of vehicles which is 100, the third involves changing the communication range at a constant speed and vehicle number. This study represents a foundation for researchers to help elaborate on the strength and weaknesses of these two protocols. OMNeT++ in conjunction with SUMO is used for simulation.

References

  1. G. Dimitrakopoulos, “Current Technologies in Vehicular Communications,” Springer, ISBN 978-3-319-47244-7, 2017.
  2. A. K. Kazi and S. M. Khan, “DyTE: An Effective Routing Protocol for VANET in Urban Scenarios,” Eng. Technol. Appl. Sci. Res., vol. 11, no. 2, pp. 6979–6985, 2021.
  3. S. Tarapiah, K. Aziz, and S. Atalla, “Analysis the performance of vehicles ad hoc network,” Procedia Comput. Sci., vol. 124, pp. 682–690, 2017.
  4. C. Tripp-Barba, A. Zaldívar-Colado, L. Urquiza-Aguiar, and J. A. Aguilar-Calderón, “Survey on routing protocols for vehicular ad Hoc networks based on multimetrics,” Electron., vol. 8, no. 10, pp. 1–32, 2019, doi: 10.3390/electronics8101177.
  5. I. A. Aljabry and G. A. Al-Suhail, “A Survey on Network Simulators for Vehicular Ad-hoc Networks (VANETS),” Int. J. Comput. Appl., vol. 174, no. 11, pp. 1– 9, 2021, doi: 10.5120/ijca2021920979.
  6. V. Nampally and M. R. Sharma, “Information sharing standards in communication for VANET,” Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud., vol. 7, no. 4, pp. 1953– 2319, 2018.
  7. K. Tanuja, T. M. Sushma, M. Bharathi, and K. H. Arun, “A survey on VANET technologies,” Int. J. Comput. Appl., vol. 121, no. 18, 2015.
  8. W. Liang, Z. Li, H. Zhang, S. Wang, and R. Bie, “Vehicular ad hoc networks: architectures, research issues, methodologies, challenges, and trends,” Int. J. Distrib. Sens. Networks, vol. 11, no. 8, 2015.
  9. F. Arena, G. Pau, and A. Severino, “A review on IEEE 802.11 p for intelligent transportation systems,” J. Sens. Actuator Networks, vol. 9, no. 2, p. 22, 2020.
  10. S. Malik and P. K. Sahu, “A comparative study on routing protocols for VANETs,” Heliyon, vol. 5, no. 8, 2019.
  11. R. K. Aswed and M. A. Abdala, “Analyzing Routing Protocols Performance in VANET Using 802.11 p and 802.11 g,” Int. J. Sci. Eng. Comput. Technol., vol. 5, no. 1, pp. 6–12, 2015.
  12. M. R. Ghori, K. Z. Zamli, N. Quosthoni, M. Hisyam, and M. Montaser, “Vehicular ad-hoc network (VANET): Review,” IEEE Int. Conf. Innov. Res. Dev., pp. 1–6, 2018. 0 20 40 60 80 100 100 150 200 250 300 Packet Delivery Ratio(%) Communication Range (m) GPSR AODV 0 0.5 1 1.5 2 2.5 100 150 200 250 300 End-to-end Delay (s) Communication Range (m) GPSR AODV Aljabry & Al-Suhail
  13. H. HadiSaleh and S. Hasoon, “A Survey on VANETs: Challenges and Solutions,” Int. J. Eng. Technol., vol. 7, pp. 711–719, 2018, doi: 10.14419/ijet.v8i1.5.25113.
  14. A. Rasheed, S. Gillani, S. Ajmal, and A. Qayyum, “Vehicular ad hoc network (VANET): A survey, challenges, and applications,” in Vehicular Ad-Hoc Networks for Smart Cities, Springer, 2017, pp. 39–51.
  15. N. Upadhyaya and D. J. S. Shah, “AODV routing protocol implementation in VANET,” Int. J. Adv. Res. Eng. Technol., vol. 10, no. 2, pp. 585–595, 2019.
  16. P. K. Shrivastava and L. K. Vishwamitra, “Comparative analysis of proactive and reactive routing protocols in VANET environment,” Meas. Sensors, 2021, doi: 10.1016/j.measen.2021.100051.
  17. B. Marzak, H. Toumi, E. Benlahmar, and M. Talea, “Performance analysis of routing protocols in vehicular ad hoc network,” in International Symposium on Ubiquitous Networking, 2016, pp. 31–42.
  18. M. R. Ghori, A. S. Sadiq, and A. Ghani, “VANET routing protocols: review, implementation and analysis,” in Journal of Physics: Conference Series, 2018, vol. 1049, no. 1.
  19. N. Sharma and J. Thakur, “Performance analysis of AODV &GPSR routing protocol in VANET,” Int. J. Comput. Sci. Eng. Technol., vol. 4, no. 02, pp. 104–112, 2013.
  20. R. Brendha and V. S. J. Prakash, “A survey on routing protocols for vehicular Ad Hoc networks,” in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 2017, pp. 1–7.
  21. B. T. Sharef, R. A. Alsaqour, and M. Ismail, “Vehicular communication ad hoc routing protocols: A survey,” J. Netw. Comput. Appl., vol. 40, pp. 363–396, 2014.
  22. M. M. A. Elgazzar and A. Alshareef, “VANET Simulator: Full Design Architecture,” Int. J. Eng. Adv. Technol., vol. 9, no. 3, pp. 2024–2034, 2020, doi: 10.35940/ijeat.c4784.029320.
  23. F. Domingos, A. Boukerche, L. Villas, C. Viana, and A. A. F. Loureiro, “Data Communication in VANETs : A Survey, Challenges and Applications,” vol. 44, pp. 90– 103, 2016.
  24. L. Rivoirard, M. Wahl, P. Sondi, M. Berbineau, and D. Gruyer, “Performance evaluation of AODV, DSR, GRP and OLSR for VANET with real-world trajectories,” in Proceedings of 2017 15th International Conference on ITS Telecommunications, ITST 2017, 2017, pp. 1–7, doi: 10.1109/ITST.2017.7972224.
  25. N. M. Alfahad, S. A. Aliesawi, and F. S. Mubarek, “Enhancing AODV routing protocol based on direction and velocity for real-time urban scenario,” J. Theor. Appl. Inf. Technol., vol. 96, no. 18, pp. 6220–6231, 2018.
  26. A. Ahamed and H. Vakilzadian, “Impact of Direction Parameter in Performance of Modified AODV in VANET,” J. Sens. Actuator Networks, vol. 9, no. 3, 2020.
  27. C. Chen, H. Li, J. Zhang, H. Wei, and H. Wang, “A geographic routing protocol based on trunk line in VANETs,” Digit. Commun. Networks, 2021.
  28. V. K. S. and S. V. Uma, “Performance Examination of GPSR and AODV Routing Protocols in MANETS,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2S, pp. 459–461, 2019, doi: 10.35940/ijitee.B1117.1292S19.
  29. M. Mahmoud and M. A. Al-Khasawneh, “Greedy Intersection-Mode Routing Strategy Protocol for Vehicular Networks,” Hindawi, Complex., 2020, doi: 10.1155/2020/4870162
  30. A. Bengag, A. Bengag, and M. Elboukhari, “A novel greedy forwarding mechanism based on density, speed and direction parameters for vanets,” Int. J. Interact. Mob. Technol., vol. 14, no. 8, pp. 196–204, 2020, doi: 10.3991/IJIM.V14I08.12695.
  31. M. Houmer and M. L. Hasnaoui, “An Enhancement of Greedy Perimeter Stateless Routing Protocol in VANET,” in Procedia Computer Science, 2019, vol. 160, pp. 101– 108, doi: 10.1016/j.procs.2019.09.449.