Non-ideal channel conditions degrade the performance of wireless networks due to the occurrence of frame errors. Most of the well-known works compute the saturation throughput and packet delay for the IEEE 802.11 Distributed Coordination Function (DCF) protocol with the assumption that transmission is carried out via an ideal channel (i.e., no channel bit errors or hidden stations), and/or the errors exist only in data packets. Besides, there are no considerations for transmission errors in the control frames (i.e., Request to Send (RTS), Clear to Send (CTS), and Acknowledgement (ACK)). Considering the transmission errors in the control frames adds complexity to the existing analysis for the wireless networks. In this paper, an analytical model to evaluate the Medium Access Control (MAC) layer saturation throughput and packet delay of the IEEE 802.11g and IEEE 802.11n protocols in the presence of both collisions and transmission errors in a non-ideal wireless channel is provided. The derived analytical expressions reveal that the saturation throughput and packet delay are affected by the network size (n), packet size, minimum backoff window size (W min ), maximum backoff stage (m), and bit error rate (BER). These results are important for protocol optimization and network planning in wireless networks .
This paper presents a new design to obtain wide dual-band operation from a coplanar probe feed antenna loaded with two shorted walls. The lower band of proposed antenna has a 10 dB bandwidth of 611 MHz (24.18%) around the center frequency 2527MHz, and the upper band has a bandwidth of 1255 MHz (27.88%) around the center frequency 4501MHz. The obtained bandwidths cover WLANs operations on all bands. The bandwidth of the first operating frequency covers ISM band (2400- 2483.5) MHz, which is required by IEEE 802.11b, g and Bluetooth standards, and the bandwidth of the second operating frequency covers U-NII1 (5150-5350) MHz band, which is required by IEEE 802.11a and HiperLAN2 standards, and also covers U-NII2 (5470-5725) MHz and U-NII3/ISM (5725-5825) MHz bands, which are required by IEEE 802.11a standard. A three dimensional finite-difference time-domain (3-D FDTD) method is employed to analyze the proposed structure and find its performance. The simulated results are compared with the experimental results.
An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.
In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.
Voltage instability problems in power system is an important issue that should be taken into consideration during the planning and operation stages of modern power system networks. The system operators always need to know when and where the voltage stability problem can occur in order to apply suitable action to avoid unexpected results. In this paper, a study has been conducted to identify the weakest bus in the power system based on multi-variable control, modal analysis, and Singular Value Decomposition (SVD) techniques for both static and dynamic voltage stability analysis. A typical IEEE 3- machine, 9-bus test power system is used to validate these techniques, for which the test results are presented and discussed.
In light of the widespread usage of power electronics devices, power quality (PQ) has become an increasingly essential factor. Due to nonlinear characteristics, the power electronic devices produce harmonics and consume lag current from the utility. The UPQC is a device that compensates for harmonics and reactive power while also reducing problems related to voltage and current. In this work, a three-phase, three-wire UPQC is suggested to reduce voltage-sag, voltage-swell, voltage and current harmonics. The UPQC is composed of shunt and series Active Power Filters (APFs) that are controlled utilizing the Unit Vector Template Generation (UVTG) technique. Under nonlinear loads, the suggested UPQC system can be improved PQ at the point of common coupling (PCC) in power distribution networks. The simulation results show that UPQC reduces the effect of supply voltage changes and harmonic currents on the power line under nonlinear loads, where the Total Harmonic Distortion (THD) of load voltages and source currents obtained are less than 5%, according to the IEEE-519 standard.
WiMAX (worldwide interoperability for microwave access) is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various channel impairments and for variety of modulation schemes. From the simulation results, we found that WiMAX system works well in both AWGN and multipath fading channels, but under certain constraints that are addressed in this paper.
In this paper, a new method based on the combination of the Teaching-learning-based-optimization (TLBO) and Black-hole (BH) algorithm has been proposed for the reconfiguration of distribution networks in order to reduce active power losses and improve voltage profile in the presence of distributed generation sources. The proposed method is applied to the IEEE 33-bus radial distribution system. The results show that the proposed method can be a very promising potential method for solving the reconfiguration problem in distribution systems and has a significant effect on loss reduction and voltage profile improvement.
This paper presents a design of a low cost, low loss 31-level multilevel inverter (MLI) topology with a reduce the number of switches and power electronic devices. The increase in the levels of MLI leads to limiting the THD to the desired value. The 31-level output voltage is created using four PV sources with a specific ratio. The SPWM is used to control the gating signals for the switches of MLI. The PV system is integrated into the MLI using a boost converter to maximize the power capacity of the solar cells and the Incremental Conductance (IC) algorithm is employed for maximum power point tracking (MPPT) of the PV system. Simulation results of 31-level MLI indicate the THD of voltage and current waveforms are 3.73% within an acceptable range of IEEE standards.
In this paper two theoretical models have been considered for the prediction of path loss for two different districts in Mosul city, using MATLAB 7.4 program. The Walfisch-Ikegami (W-I) model for uniform heights and similar buildings in the Karama district . The other model is Okumura-Hata (OH) model applied for irregular and dissimilar buildings in the Almajmoa'a district. The information buildings heights are obtained from the civil Eng. Depart. in Mosul university. In this paper it can be shown that The effect of distance in regular area (karama) on path loss is about 10 dB larger than irregular area (Almajmoa'a), and The effect of varying antenna height in regular area (karama) on path loss is about 7 dB greater than irregular area (Almajmoa'a) for 40 meter variation.
The performance of power distribution systems (PDS) has improved greatly in recent times ever since the distributed generation (DG) unit was incorporated in PDS. DG integration effectively cuts down the line power losses (PL) and strengthens the bus voltages (BV) provided the size and place are optimized. Accordingly, in the present work, a hybrid optimization technique is implemented for incorporating a single DG unit into radial PDS. The proposed hybrid method is formed by integrating the active power loss sensitivity (APLS) index and whale optimization meta-heuristic algorithm. The ideal place and size for DG are optimized to minimize total real power losses (TLP) and enhance bus voltages (BV). The applicability of the proposed hybrid technique is analyzed for Type I and Type III DG installation in a balanced IEEE 33-bus and 69-bus radial PDS. Optimal inclusion of type I and III DG in a 33-bus radial test system cut down TLP by 51.85% and 70.02% respectively. Likewise, optimal placement of type I and III DG reduced TLP by 65.18%, and 90.40%, respectively for 69-bus radial PDS. The impact of DG installation on the performance of radial PDS has been analyzed and a comparative study is also presented to examine the sovereignty of the proposed hybrid method. The comparative study report outlined that the proposed hybrid method can be a better choice for solving DG optimization in radial PDS.
Minimization of active power losses is one of the essential aims for any electric utility, due to its importance in improvement of system properties towards minimum production cost and to support increase load requirement. In this paper we have studied the possibility of reducing the value of real power losses for (IEEE-14- Bus bar) global system transmission lines by choosing the best location to install shunt capacitor depending on new algorithm for calculate the optimal allocation, which considering the value of real power losses derivative with injection reactive power as an indicator of the ability of reducing losses at load buses. The results show the validity of this method for application in electric power transmission lines.
The continuously ever-growing demand for the electrical power causing the continuous expansion and complexity of power systems, environmental and economic factors forcing the system to work near the critical limits of stability, so research's stability have become research areas worthy of attention in the resent day. The present work includes two phases: The first one is to determine the Voltage Stability Index for the more insensitive load bus to the voltage collapse in an interconnected power system using fast analyzed method based on separate voltage and current for PQ buses from these of PV buses, while the second phase is to suggested a simulated optimization technique for optimal voltage stability profile all around the power system. The optimization technique is used to adjust the control variables elements: Generator voltage magnitude, active power of PV buses, VAR of shunt capacitor banks and the position of transformers tap with satisfied the limit of the state variables (load voltages, generator reactive power and the active power of the slack bus). These control variables are main effect on the voltage stability profile to reach the peak prospect voltage stable loading with acceptable voltage profile. An optimized voltage collapse based on Particle Swarm Optimization has been tested on both of the IEEE 6 bus system and the Iraqi Extra High Voltage 400 kV Grid 28 bus . To ensure the effectiveness of the optimization technique a comparison between the stability indexes for load buses before and after technical application are presented. Simulation results have been executed using Matlab software). Keyword: Voltage Stability Indicator; voltage collapse; Stability of Extra High Voltage Grid; PSO optimization technique.
In this paper, the power system stabilizer (PSS) and Thyristor controlled phase shifter(TCPS) interaction is investigated . The objective of this work is to study and design a controller capable of doing the task of damping in less economical control effort, and to globally link all controllers of national network in an optimal manner , toward smarter grids . This can be well done if a specific coordination between PSS and FACTS devices , is accomplished . Firstly, A genetic algorithm-based controller is used. Genetic Algorithm (GA) is utilized to search for optimum controller parameter settings that optimize a given eigenvalue based objective function. Secondly, an optimal pole shifting, based on modern control theory for multi-input multi-output systems, is used. It requires solving first order or second order linear matrix Lyapunov equation for shifting dominant poles to much better location that guaranteed less overshoot and less settling time of system transient response following a disturbance.
Competitive trend towards restructuring and unbundling of transmission services has resulted in the need renteto discover the impact of a particular generator to load. This paper initially presents the analysis of three diff reactive power valuation methods namely, Modified Y bus , Virtual flow approach and Modified Power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best because of its various features. Secondly, based on this Method, the opportunity cost for practical system is determined. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking IEEE 30 bus system as test system.
This paper deals with the navigation of a mobile robot in unknown environment using artificial potential field method. The aim of this paper is to develop a complete method that allows the mobile robot to reach its goal while avoiding unknown obstacles on its path. An approach proposed is introduced in this paper based on combing the artificial potential field method with fuzzy logic controller to solve drawbacks of artificial potential field method such as local minima problems, make an effective motion planner and improve the quality of the trajectory of mobile robot.