Cover
Vol. 21 No. 1 (2025)

Published: September 19, 2025

Pages: 178-188

Original Article

Design and Simulation of Reduced Switch 31-Level Multilevel Inverter Topology for PV Application

Abstract

This paper presents a design of a low cost, low loss 31-level multilevel inverter (MLI) topology with a reduce the number of switches and power electronic devices. The increase in the levels of MLI leads to limiting the THD to the desired value. The 31-level output voltage is created using four PV sources with a specific ratio. The SPWM is used to control the gating signals for the switches of MLI. The PV system is integrated into the MLI using a boost converter to maximize the power capacity of the solar cells and the Incremental Conductance (IC) algorithm is employed for maximum power point tracking (MPPT) of the PV system. Simulation results of 31-level MLI indicate the THD of voltage and current waveforms are 3.73% within an acceptable range of IEEE standards.

References

  1. J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel invert- ers: a survey of topologies, controls, and applications,” IEEE Transactions on industrial electronics, vol. 49, no. 4, pp. 724–738, 2002.
  2. P. Qashqai, A. Sheikholeslami, H. Vahedi, and K. Al- Haddad, “A review on multilevel converter topolo- gies for electric transportation applications,” in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6, IEEE, 2015.
  3. P. Omer, J. Kumar, and B. S. Surjan, “A review on re- duced switch count multilevel inverter topologies,” IEEE Access, vol. 8, pp. 22281–22302, 2020.
  4. C. Dhanamjayulu and S. Meikandasivam, “Implemen- tation and comparison of symmetric and asymmetric multilevel inverters for dynamic loads,” IEEE Access, vol. 6, pp. 738–746, 2017. 185 | Abdulhasan, Jaber & Kheerallah 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Time (Sec) -1500 -1000 -500 0 500 1000 1500 Voltage (V) (a) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) -1500 -1000 -500 0 500 1000 1500 Voltage (V) (b) 1000W/m2 and 25◦C for resistive R = 100Ω; (b) Zoom view of Fig.12(a).
  5. C. Dhanamjayulu and S. Meikandasivam, “Performance verification of symmetric hybridized cascaded multilevel inverter with reduced number of switches,” in 2017 Inno- vations in Power and Advanced Computing Technologies (i-PACT), pp. 1–5, IEEE, 2017.
  6. C. Dhanamjayulu, D. Prasad, S. Padmanaban, P. K. Maroti, J. B. Holm-Nielsen, and F. Blaabjerg, “Design and implementation of seventeen level inverter with re- duced components,” IEEE access, vol. 9, pp. 16746– 16760, 2021.
  7. M. Narimani and G. Moschopoulos, “A novel single- stage multilevel type full-bridge converter,” IEEE Trans- actions on Industrial Electronics, vol. 60, no. 1, pp. 31– 42, 2012. 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) 0 50 100 Voltage (V) S1 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) 0 100 200 Voltage (V) S2 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) 0 200 400 Voltage (V) S3 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) 0 500 Voltage (V) S4 MLI for load R = 100Ωat 1000W/m2 and 25◦C.
  8. C. Dhanamjayulu, S. Padmanaban, J. B. Holm-Nielsen, and F. Blaabjerg, “Design and implementation of a single-phase 15-level inverter with reduced components for solar pv applications,” IEEE access, vol. 9, pp. 581– 594, 2020. 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Time (Sec) -15 -10 -5 0 5 10 15 Current (A) 25◦C for load R = 100Ω. 186 | Abdulhasan, Jaber & Kheerallah displayed for the 31-level MLI at 1000W/m2, 25◦C and fundamental frequency equal to 50HZ.
  9. M. D. Siddique, S. Mekhilef, N. M. Shah, A. Sarwar, A. Iqbal, and M. A. Memon, “A new multilevel inverter topology with reduce switch count,” IEEE Access, vol. 7, pp. 58584–58594, 2019.
  10. M. Khenar, A. Taghvaie, J. Adabi, and M. Rezanejad, “Multi-level inverter with combined t-type and cross- connected modules,” IET Power Electronics, vol. 11, no. 8, pp. 1407–1415, 2018.
  11. M. Rawa, M. D. Siddique, S. Mekhilef, N. Mo- hamed Shah, H. Bassi, M. Seyedmahmoudian, B. Horan, and A. Stojcevski, “Design and implementation of a hybrid single t-type double h-bridge multilevel inverter 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Time (Sec) 0 2 4 6 8 10 12 14 16 18 20 22 PV1 Voltage (V) 25◦C with boost converter and IC algorithm for resistive R = 100Ω. 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Time (Sec) -300 -200 -100 0 100 200 300 Voltage (V) (a) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) -300 -200 -100 0 100 200 300 Voltage (V) (b) and 25◦C for for resistive R = 100Ω(b) Zoom view of (stdh-mli) topology,” Energies, vol. 12, no. 9, p. 1810, 2019.
  12. M. D. Siddique, S. Mekhilef, M. Rawa, A. Wahyudie, B. Chokaev, and I. Salamov, “Extended multilevel in- verter topology with reduced switch count and voltage stress,” IEEE Access, vol. 8, pp. 201835–201846, 2020.
  13. B. S. Naik, Y. Suresh, J. Venkataramanaiah, and A. K. Panda, “A hybrid nine-level inverter topology with boost- ing capability and reduced component count,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 316–320, 2020.
  14. M. Fahad, M. D. Siddique, A. Iqbal, A. Sarwar, and S. Mekhilef, “Implementation and analysis of a 15-level inverter topology with reduced switch count,” IEEE Ac- cess, vol. 9, pp. 40623–40634, 2021.
  15. S. Panneerselvam, K. Kandasamy, and C. Perumal, “Modelling and simulation of sinusoidal pulse width 187 | Abdulhasan, Jaber & Kheerallah 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Time (Sec) -3 -2 -1 0 1 2 3 Current (A) 25◦C for for resistive R = 100Ω. displayed for the 31-level MLI at 200W/m2 , 25◦C and fundamental frequency equal to 50HZ for resistive R = 100Ω. modulation controller for solar photovoltaic inverter to minimize the switching losses and improving the system efficiency,” Archives of Electrical Engineering, vol. 71, no. 3, 2022.
  16. M. E. Bas¸o˘glu, “Realization of a low cost and fast boost converter based mppt for pv system,” in 2019 4th In- ternational Conference on Power Electronics and their Applications (ICPEA), pp. 1–6, IEEE, 2019.
  17. T. Roy, P. K. Sadhu, and A. Dasgupta, “Cross-switched multilevel inverter using novel switched capacitor con- verters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8521–8532, 2019. 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 Time (Sec) -1500 -1000 -500 0 500 1000 1500 Voltage (V) 3 4 5 6 7 10-3 1250 1300 1350 1400 1450 1500 and 40◦C for load 50Ω+100mH. 0 0.005 0.01 0.015 0.02 0.025 Time (Sec) -30 -20 -10 0 10 20 30 Current (A) and temperature 40◦C for load 50 Ω+100mH.
  18. B. Sahoo, S. K. Routray, and P. K. Rout, “Repetitive control and cascaded multilevel inverter with integrated hybrid active filter capability for wind energy conver- sion system,” Engineering Science and Technology, an International Journal, vol. 22, no. 3, pp. 811–826, 2019.
  19. J. Zeng, W. Lin, D. Cen, and J. Liu, “Novel k-type multilevel inverter with reduced components and self- balance,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 4343–4354, 2019.
  20. A. Ahmad, M. Anas, A. Sarwar, M. Zaid, M. Tariq, J. Ahmad, and A. R. Beig, “Realization of a generalized switched-capacitor multilevel inverter topology with less 188 | Abdulhasan, Jaber & Kheerallah switch requirement,” Energies, vol. 13, no. 7, p. 1556, 2020.
  21. M. R. Hussan, A. Sarwar, M. D. Siddique, S. Mekhilef, S. Ahmad, M. Sharaf, M. Zaindin, and M. Firdausi, “A novel switched-capacitor multilevel inverter topology for energy storage and smart grid applications,” Electronics, vol. 9, no. 10, p. 1703, 2020.
  22. K.-M. Kim, J.-K. Han, and G.-W. Moon, “A high step- up switched-capacitor 13-level inverter with reduced number of switches,” IEEE Transactions on Power Elec- tronics, vol. 36, no. 3, pp. 2505–2509, 2020.
  23. O. Y. Al-Atbee, B. T. Kadhem, S. S. Harden, and K. M. Abdulhassan, “A fifteen levels inverter with a lower num- ber of devices and higher performance,” Iraqi Journal for Electrical And Electronic Engineering, vol. 19, no. 1, 2023.