Cover
Vol. 16 No. Special Issue (2020)

Published: June 30, 2020

Pages: 86-92

Conference Article

Robotic Glove for Rehabilitation Purpose: Review

Abstract

Rehabilitation robots have become one of the main technical instruments that Treat disorder patients in the biomedical engineering field. The robotic glove for the rehabilitation is basically made of specialized materials which can be designed to help the post-stroke patients. In this paper, a review of the different types of robotic glove for Rehabilitation have been discussed and summarized. This study reviews a different mechanical system of robotic gloves in previous years. The selected studies have been classified into four types according to the Mechanical Design: The first type is a tendon-driven robotic glove. The second type of robotic glove works with a soft actuator as a pneumatic which is operated by air pressure that passes through a plastic pipe, pressure valves, and air compressor. The third type is the exoskeleton robotic gloves this type consists of a wearable mechanical design that can used a finger-based sensor to measure grip strength or is used in interactive video applications. And the fourth type is the robotic glove with a liner actuator this type consists of a tape placed on the fingers and connected to linear actuators to open and close the fingers during the rehabilitation process.

References

  1. H. K. Yap, J. C. H. Goh, and R. C. H. Yeow, “Design and Characterization of Soft Actuator for Hand Rehabilitation Application,” IFMBE Proc., vol. 45, pp. 367– 370, 2015.
  2. U. Jeong, H. K. In, and K. J. Cho, “Implementation of various control algorithms for hand rehabilitation exercise using wearable robotic hand,” Intell. Serv. Robot., vol. 6, no. 4, pp. 181–189, 2013.
  3. S. Biggar and W. Yao, “Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 10, pp. 1071– 1080, 2016.
  4. A. M. M. Ali, R. Ambar, M. M. A. Jamil, and J. S. Pusu, “Via for,” 2012.
  5. C. J. Nycz, M. A. Delph, and G. S. Fischer, “Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, no. July 2017, pp. 3889–3892, 2015.
  6. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Rob. Auton. Syst., vol. 73, pp. 135–143, 2015.
  7. P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O’Donnell, and C. J. Walsh, “Soft robotic glove for hand rehabilitation and task specific training,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-June, no. June, pp. 2913– 2919, 2015.
  8. H. K. Yap, J. H. Lim, J. C. H. Goh, and C. H. Yeow, “Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators,” J. Med. Devices, Trans. ASME, vol. 10, no. 4, 2016.
  9. Z. Ma, P. Ben-Tzvi, and J. Danoff, “Hand Rehabilitation Learning System with an Exoskeleton Robotic Glove,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 12, pp. 1323–1332, 2016.
  10. S. J. Biggar, W. Yao, L. Wang, and Y. Fan, “User- Centric Feedback for the Development and Review of a Unique Robotic Glove Prototype to Be Used in Therapy,” J. Healthc. Eng., vol. 2017, 2017.
  11. D. Popescu, M. Ivanescu, R. Popescu, L. C. Popescu, A. Petrisor, and A. M. Bumbea, “Post-stroke assistive rehabilitation robotic gloves,” Proc. 2016 Int. Conf. Expo. Electr. Power Eng. EPE 2016, no. Epe, pp. 360–365, 2016.
  12. D. Popescu, M. Ivanescu, S. Manoiu-Olaru, M. I. Burtea, and N. Popescu, “Robotic glove development with application in robotics rehabilitation,” EPE 2014 - Proc. 2014 Int. Conf. Expo. Electr. Power Eng., no. Epe, pp. 168– 173, 2014.
  13. B. B. Kang, H. Lee, H. In, U. Jeong, J. Chung, and K. Cho, “Conf 27_2016_Development of Polymer-Based Tendon-Driven Wearable Robotic Hand,” pp. 3750–3755, 2016.
  14. S. Hartopanu and M. Poboroniuc, “New Issues on FES and Robotic Glove Device to Improve the Hand Rehabilitation in Stroke Patients,” Nternational Conf. Mod. Power Syst., no. May, pp. 18–21, 2015.
  15. D. C. Irimia, M. S. Poboroniuc, S. Hartopanu, D. Sticea, G. Paicu, and B. E. Ignat, “Post-stroke hand rehabilitation using a hybrid FES-robotic glove,” Proc. 2016 Int. Conf. Expo. Electr. Power Eng. EPE 2016, no. Epe, pp. 356–359, 2016.
  16. K. O. Thielbar et al., “Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors,” IEEE Trans. Neural Syst. Rehabil. Eng., pp. 1–10, 2016.
  17. A. Stilli et al., “AirExGlove-A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post- stroke patients,” 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018. pp. 579–584, 2018.
  18. C.-Y. Lina, Chia-MinTsaia, P.-C. Shihb, and H.-C. Wub, “Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation,” Technol. Heal. Care, vol. 24, pp. 97–103, 2016.
  19. A. Karime, H. Al-Osman, W. Gueaieb, and A. El Saddik, “E-Glove: An electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients,” Proceedings - IEEE International Conference on Multimedia and Expo. 2011.
  20. A. A. Hidayat, Zainal Arief, and D. C. Happyanto, “Mobile Application With Simple Moving Average Filtering For Monitoring Finger Muscles Therapy Of Post-Stroke People,” Int. Electron. Symp., pp. 1–6, 2015.
  21. H. C. Fischer et al., “Use of a Portable Assistive Glove to Facilitate Rehabilitation in Stroke Survivors with Severe Hand Impairment,” IEEE Trans. Neural Syst. Rehabil. Eng. TNSRE-2015-00086.R2, pp. 1–9, 2015.
  22. L. Connelly, Y. Jia, M. L. Toro, M. E. Stoykov, R. V. Kenyon, and D. G. Kamper, “A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 5. pp. 551–559, 2010.
  23. Y. Guo, F. Xu, Y. Song, X. Cao, and F. Meng, A Soft Robotic Glove for Hand Rehabilitation Using Pneumatic Actuators with Variable Stiffness, vol. 2. Springer International Publishing, 2019.
  24. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Rob. Auton. Syst., vol. 73, pp. 135–143, 2015, doi: 10.1016/j.robot.2014.08.014.
  25. H. K. Yap et al., “A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1383–1390, 2017, doi: 10.1109/LRA.2017.2669366.
  26. C. Dai and X. Hu, “Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings,” Int. J. Neural Syst., vol. 29, no. 1, 2019, doi: 10.1142/S0129065718500259. Ahmed, Al-Neami & Lateef
  27. Y. M. Zhou et al., “Soft robotic glove with integrated sensing for intuitive grasping assistance post spinal cord injury,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2019- May, pp. 9059–9065, 2019, doi: 10.1109/ICRA.2019.8794367.
  28. K. H. L. Heung, R. K. Y. Tong, A. T. H. Lau, and Z. Li, “Robotic Glove with Soft-Elastic Composite Actuators for Assisting Activities of Daily Living,” Soft Robot., vol. 6, no. 2, pp. 289–304, 2019, doi: 10.1089/soro.2017.0125.
  29. M. Gerle, D. Jakobsson, M. Makris, and E. Nordqvist, “A Chalmers University of Technology Bachelor ’ s thesis The human in the loop robot,” 2018.
  30. O. Sandoval-Gonzalez et al., “Design and development of a hand exoskeleton robot for active and passive rehabilitation,” Int. J. Adv. Robot. Syst., vol. 13, no. 2, 2016, doi: 10.5772/62404.
  31. M. Ariyanto, R. Ismail, A. Nurmiranto, W. Caesarendra, Paryanto, and J. Franke, “Development of a low cost anthropomorphic robotic hand driven by modified glove sensor and integrated with 3D animation,” IECBES 2016 - IEEE-EMBS Conf. Biomed. Eng. Sci., pp. 341–346, 2016, doi: 10.1109/IECBES.2016.7843470.
  32. D. Popescu, M. Ivanescu, S. Manoiu-Olaru, M. I. Burtea, and N. Popescu, “Robotic glove development with application in robotics rehabilitation,” EPE 2014 - Proc. 2014 Int. Conf. Expo. Electr. Power Eng., no. Epe, pp. 168– 173, 2014, doi: 10.1109/ICEPE.2014.6969890.
  33. S. W. Pu and J. Y. Chang, “Robotic hand system design for mirror therapy rehabilitation after stroke,” Microsyst. Technol., vol. 3, 2019, doi: 10.1007/s00542-019-04483-3.
  34. T. Vanteddu, P. Ben-Tzvi, S. C. Southward, and A. Leonessa, “Grasp Stability with a Robotic Exoskeleton Glove,” 2019.
  35. S. U. N. Zhong-sheng, G. U. O. Zhong-hua, and T. Wei, “Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator,” pp. 0–2, 2019.
  36. P. Bernocchi, C. Mulè, F. Vanoglio, G. Taveggia, A. Luisa, and S. Scalvini, “Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study,” Top. Stroke Rehabil., vol. 25, no. 2, pp. 114–119, 2018, doi: 10.1080/10749357.2017.1389021.
  37. B. Radder et al., “A wearable soft-robotic glove enables hand support in ADL and rehabilitation: A feasibility study on the assistive functionality,” J. Rehabil. Assist. Technol. Eng., vol. 3, p. 205566831667055, 2016, doi: 10.1177/2055668316670553.
  38. D. Popescu, M. Ivanescu, S. Manoiu-Olaru, L. C. Popescu, and N. Popescu, “Development of robotic gloves for hand rehabilitation post-stroke,” Proc. - 2015 20th Int. Conf. Control Syst. Comput. Sci. CSCS 2015, pp. 838–844, 2015, doi: 10.1109/CSCS.2015.95.
  39. N. Norouzi-Gheidari, A. Hernandez, P. S. Archambault, J. Higgins, L. Poissant, and D. Kairy, “Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: A pilot randomized clinical trial and proof of principle,” Int. J. Environ. Res. Public Health, vol. 17, no. 1, pp. 1–11, 2020, doi: 10.3390/ijerph17010113.
  40. A. Yurkewich, I. J. Kozak, D. Hebert, R. H. Wang, and A. Mihailidis, “Hand Extension Robot Orthosis (HERO) Grip Glove: Enabling independence amongst persons with severe hand impairments after stroke,” J. Neuroeng. Rehabil., vol. 17, no. 1, pp. 1–17, 2020, doi: 10.1186/s12984-020-00659-5.
  41. M. C. Barba et al., Augmented Reality VS Virtual Reality, vol. 1. Springer International Publishing, 2019.
  42. Martinez Luna, Carlos Humberto, Michael Alfred Delph, Philip Walter Gauthier, and Sarah Anne Fischer. "Rehabilitative Robotic Glove." (2012).
  43. M. Seçkin and N. Yaman Turan, “Rehabilitation Glove Device Design,” J. Eng. Technol. Appl. Sci., vol. 3, no. 1, pp. 75–81, 2018, doi: 10.30931/jetas.391297.
  44. B. Aparna, B. Anithakrithi, P. Naveena, M. Yaswanth Kumar, M. Avinash, and S. Sivanandam, “Design and simulation of bionic glove for rehabilitation of the paralytics,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 1–6, 2018, doi: 10.14419/ijet.v7i2.8.10314.