This paper provides a two algorithms for designing robust formation control of multiple robots called Leader- Neighbor algorithm and Neighbor-Leader algorithm in unknown environment. The main function of the robot group is to use the RP lidar sensor attached to each robot to form a static geometric polygon. The algorithms consist of two phases implemented to investigate the formation of polygon shape. In the leading- neighbor algorithm, the first stage is the leader alignment and the adjacent alignment is the second stage. The first step uses the information gathered by the main RP Lidar sensor to determine and compute the direction of each adjacent robot. The adjacent RP Lidar sensors are used to align the adjacent robots of the leader by transferring these adjacent robots to the leader. By performing this stage, the neighboring robots will be far from the leader. The second stage uses the information gathered by adjacent RP sensors to reposition the robots so that the distance between them is equal. On the other hand, in the neighbor-leader algorithm, the adjacent robots are rearranged in a regular distribution by moving in a circular path around the leader, with equal angles between each of the two neighbor robots. A new distribution will be generated in this paper by using one leader and four adjacent robots to approve the suggested leader neighbor algorithm and neighbor-leader algorithm .
In coordination of a group of mobile robots in a real environment, the formation is an important task. Multi- mobile robot formations in global knowledge environments are achieved using small robots with small hardware capabilities. To perform formation, localization, orientation, path planning and obstacle and collision avoidance should be accomplished. Finally, several static and dynamic strategies for polygon shape formation are implemented. For these formations minimizing the energy spent by the robots or the time for achieving the task, have been investigated. These strategies have better efficiency in completing the formation, since they use the cluster matching algorithm instead of the triangulation algorithm.
The goal for collaborative robots has always driven advancements in robotic technology, especially in the manufacturing sector. However, this is not the case in service sectors, especially in the health sector. Thus, this lack of focus has now opened more room for the design and development of service robots that can be used in the health sector to help patients with ailments, cognitive problems, and disabilities. There is currently a global effort towards the development of new products and the use of robotic medical devices and computer-assisted systems. However, the major problem has been the lack of a thorough and systematic review of robotic research into disease and epidemiology, especially from a technology perspective. Also, medical robots are increasingly being used in healthcare to perform a variety of functions that improve patient care. This scoping review is aimed at discovering the types of robots used in healthcare and where they are deployed. Moreover, the current study is an overview of various forms of robotic technology and its uses the healthcare industry. The considered technologies are the products of a partnership between the healthcare sector and academia. They demonstrate the research and testing that are necessary for the service of robot development before they can be employed in practical applications and service scenarios. The discussion also focused on the upcoming research areas in robotic systems as well as some important technologies necessary for human-robot collaboration, such as wireless sensor networks, big data, and artificial intelligence.
The demand for application of mobile robots in performing boring and extensive tasks are increasing rapidly due to unavailability of human workforce. Navigation by humans within the warehouse is one among such repetitive and exhaustive task. Autonomous navigation of mobile robots for picking and dropping the shelves within the warehouse will save time and money for the warehousing business. Proposing an optimization model for automated storage and retrieval systems by the goals of its planning is investigated to minimize travel time in multi-robot systems. This paper deals with designing a system for storing and retrieving a group of materials within an environment arranged in rows and columns. Its intersections represent storage locations. The title of any subject is indicated by the row number and the column in it. A method was proposed to store and retrieve a set of requests (materials) using a number of robots as well as one receiving and delivery port. Several simulation results are tested to show this improvement in length of path and time of arrival.
Soft robots, which are often considered safer than rigid robots when interacting with humans due to the reduced risk of injury, have found utility in various medical and industrial fields. Pneumatic artificial muscles (PAMs), one of the most widely used soft actuators, have proven their efficiency in numerous applications, including prosthetic and rehabilitation robots. PAMs are lightweight, responsive, precise, and capable of delivering a high force-to-weight ratio. Their structure comprises a flexible, inflatable membrane reinforced with fibrous twine and fitted with gas-sealing fittings. For the optimal design and integration of these into control systems, it is crucial to develop mathematical models that accurately represent their functioning mechanisms. This paper introduces a general concept of PAM’s construction, its various types, and operational mechanisms, along with its key benefits and drawbacks, and also reviews the most common modeling techniques for PAM representation. Most models are grounded in PAM architecture, aiming to calculate the actuator’s force across its full axis by correlating pressure, length, and other parameters that influence actuator strength.
Soft robotics is a modern technique that allows robots to have more capabilities than conventional rigid robots. Pneumatic Muscle Actuators (PMAs), also known as McKibben actuators, are an example of soft actuators. This research covered the design and production of a pneumatic robot end effector. Smooth, elastic, flexible, and soft qualities materials have contributed to the creation of Soft Robot End-Effector (SREE). To give SREE compliance, it needs to handle delicate objects while allowing it to adapt to its surroundings safely. The research focuses on the variable stiffness SREE’s inspiration design, construction, and manufacturing. As a result, a new four-fingered variable stiffness soft robot end effector was created. SREE has been designed using two types of PMAs: Contractor PMAs (CPMAs) and Extensor PMAs (EPMAs). Through tendons and Contractor PMAs, fingers can close and open. SREE was tested and put into practice to handle various object types. The innovative movement of the suggested SREE allows it to grip with only two fingers and open and close its grasp with all of its fingers.
Using a lower limb exoskeleton for rehabilitation (LLE) Lower limb exoskeleton rehabilitation robots (LER) are designed to assist patients with daily duties and help them regain their ability to walk. Even though a substantial portion of them is capable of doing both, they have not yet succeeded in conducting agile and intelligent joint movement between humans and machines, which is their ultimate goal. The typical LLE products, rapid prototyping, and cutting-edge techniques are covered in this review. Restoring a patient’s athletic prowess to its pr-accident level is the aim of rehabilitation treatment. The core of research on lower limb exoskeleton rehabilitation robots is the understanding of human gait. The performance of common prototypes might be used to match wearable robot shapes to human limbs. To imitate a normal stride, robot-assisted treatment needs to be able to control the movement of the robot at each joint and move the patient’s limb.
In this paper, a new technique for multi-robot localization in an unknown environment, called the leader-follower localization algorithm is presented. The framework utilized here is one robot that goes about as a leader and different robots are considered as followers distributed randomly in the environment. Every robot equipped with RP lidar sensors to scan the environment and gather information about every robot. This information utilized by the leader to distinguish and confine every robot in the environment. The issue of not noticeable robots is solved by contrasting their distances with the leader. Moreover, the equivalent distance robot issue is unraveled by utilizing the permutation algorithm. Several simulation scenarios with different positions and orientations are implemented on (3- 7) robots to show the performance of the introduced technique.
According to the growing interest in the soft robotics research field, where various industrial and medical applications have been developed by employing soft robots. Our focus in this paper will be the Pneumatic Muscle Actuator (PMA), which is the heart of the soft robot. Achieving an accurate control method to adjust the actuator length to a predefined set point is a very difficult problem because of the hysteresis and nonlinearity behaviors of the PMA. So the construction and control of a 30 cm soft contractor pneumatic muscle actuator (SCPMA) were done here, and by using different strategies such as the PID controller, Bang-Bang controller, Neural network controller, and Fuzzy controller, to adjust the length of the (SCPMA) between 30 cm and 24 cm by utilizing the amount of air coming from the air compressor. All of these strategies will be theoretically implemented using the MATLAB/Simulink package. Also, the performance of these control systems will be compared with respect to the time-domain characteristics and the root mean square error (RMSE). As a result, the controller performance accuracy and robustness ranged from one controller to another, and we found that the fuzzy logic controller was one of the best strategies used here according to the simplicity of the implementation and the very accurate response obtained from this method.
The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.
Due to the last increase in data and information technology, the need to use robots in many life areas is increased. There is a great diversity in this field, depending on the type of task required, as the robot enters the parcels of air, land, and water. In this paper, a robot's mission designed to move things is concentrated, relying on line-tracing technology that makes it easy to track its path safely, the RFID is distributed in its approach. When the robot reads the RFID tag, it stops until it raises the load from above, the robot continues its path toward the target. When an obstacle obstructs the robot path, the robot deviates and returns after a while to its previous approach. All this technology is implemented using a new algorithm which is programmed using the visual basic program. The robot designed to transfer the stored material is used according to a site known as an identifier that is identified by the RFID value, where the robot is programmed through a microcontroller and a unique store program that determines the current location and the desired location, then is given the task for the robot to do it as required. The robot is controlled using an ATmega controller to control other parts connected to the electronic circuit, the particular infrared sensor, and ultrasound to avoid potential obstacles within the robot's path to reach the target safely. In addition to this, the robot is made up of an RFID sensor to give unique to each desired target site. Through the console, it is possible to know the link indicated by the target. The H-bridge is also used to obtain a particular command and guide the robot as needed to move freely in all directions and a DC motor which is unique for moving wheels at the desired speed, and Bluetooth for programmable and secure wireless transmission and reception with all these parts through a unique program that also uses application inventory. The robot has proven to be a great success in performing the required task through several tests that have been practically performed.
Rehabilitation robots have become one of the main technical instruments that Treat disorder patients in the biomedical engineering field. The robotic glove for the rehabilitation is basically made of specialized materials which can be designed to help the post-stroke patients. In this paper, a review of the different types of robotic glove for Rehabilitation have been discussed and summarized. This study reviews a different mechanical system of robotic gloves in previous years. The selected studies have been classified into four types according to the Mechanical Design: The first type is a tendon-driven robotic glove. The second type of robotic glove works with a soft actuator as a pneumatic which is operated by air pressure that passes through a plastic pipe, pressure valves, and air compressor. The third type is the exoskeleton robotic gloves this type consists of a wearable mechanical design that can used a finger-based sensor to measure grip strength or is used in interactive video applications. And the fourth type is the robotic glove with a liner actuator this type consists of a tape placed on the fingers and connected to linear actuators to open and close the fingers during the rehabilitation process.
In this paper, a new algorithm called table-based matching for multi-robot (node) that used for localization and orientation are suggested. The environment is provided with two distance sensors fixed on two beacons at the bottom corners of the frame. These beacons have the ability to scan the environment and estimate the location and orientation of the visible nodes and save the result in matrices which are used later to construct a visible node table. This table is used for matching with visible-robot table which is constructed from the result of each robot scanning to its neighbors with a distance sensor that rotates at 360⁰; at this point, the location and identity of all visible nodes are known. The localization and orientation of invisible robots rely on the matching of other tables obtained from the information of visible robots. Several simulations implementation are experienced on a different number of nodes to submit the performance of this introduced algorithm.
The Leader detecting and following are one of the main challenges in designing a leader-follower multi-robot system, in addition to the challenge of achieving the formation between the robots, while tracking the leader. The biological system is one of the main sources of inspiration for understanding and designing such multi-robot systems, especially, the aggregations that follow an external stimulus such as light. In this paper, a multi-robot system in which the robots are following a spotlight is designed based on the behavior of the Artemia aggregations. Three models are designed: kinematic and two dynamic models. The kinematic model reveals the light attraction behavior of the Artemia aggregations. The dynamic model will be derived based on the newton equation of forces and its parameters are evaluated by two methods: first, a direct method based on the physical structure of the robot and, second, the Least Square Parameter Estimation method. Several experiments are implemented in order to check the success of the three proposed systems and compare their performance. The experiments are divided into three scenarios of simulation according to three paths: the straight line, circle, zigzag path. The V-Rep software has been used for the simulation and the results appeared the success of the proposed system and the high performance of tracking the spotlight and achieving the flock formation, especially the dynamic models.
Although the Basic RRT algorithm is considered a traditional search method, it has been widely used in the field of robot path planning (manipulator and mobile robot), especially in the past decade. This algorithm has many features that give it superiority over other methods. On the other hand, the Basic RRT suffers from a bad convergence rate (it takes a long time until finding the goal point), especially in environments with cluttered obstacles, or whose targets are located in narrow passages. Many studies have discussed this problem in recent years. This paper introduces an improved method called (Hybrid RRT-A*) to overcome the shortcomings of the original RRT, specifically slow convergence and cost rate. The heuristic function of A-star algorithm is combined with RRT to decrease tree expansion and guide it towards the goal with less nodes and time. Various experiments have been conducted with different environment scenarios to compare the proposed method with the Basic RRT and A-star under the same conditions, which have shown remarkable performance. The time consumed to find the path of the worst one of these scenarios is about 4.9 seconds, whereas it is 18.3 and 34 for A-star and RRT, respectively.
Path-planning is a crucial part of robotics, helping robots move through challenging places all by themselves. In this paper, we introduce an innovative approach to robot path-planning, a crucial aspect of robotics. This technique combines the power of Genetic Algorithm (GA) and Probabilistic Roadmap (PRM) to enhance efficiency and reliability. Our method takes into account challenges caused by moving obstacles, making it skilled at navigating complex environments. Through merging GA’s exploration abilities with PRM’s global planning strengths, our GA-PRM algorithm improves computational efficiency and finds optimal paths. To validate our approach, we conducted rigorous evaluations against well-known algorithms including A*, RRT, Genetic Algorithm, and PRM in simulated environments. The results were remarkable, with our GA-PRM algorithm outperforming existing methods, achieving an average path length of 25.6235 units and an average computational time of 0.6881 seconds, demonstrating its speed and effectiveness. Additionally, the paths generated were notably smoother, with an average value of 0.3133. These findings highlight the potential of the GA-PRM algorithm in real-world applications, especially in crucial sectors like healthcare, where efficient path-planning is essential. This research contributes significantly to the field of path-planning and offers valuable insights for the future design of autonomous robotic systems.
In recent years, wireless microrobots have gotten more attention due to their huge potential in the biomedical field, especially drug delivery. Microrobots have several benefits, including small size, low weight, sensitivity, and flexibility. These characteristics have led to microscale improvements in control systems and power delivery with the development of submillimeter-sized robots. Wireless control of individual mobile microrobots has been achieved using a variety of propulsion systems, and improving the actuation and navigation of microrobots will have a significant impact. On the other hand, actuation tools must be integrated and compatible with the human body to drive these untethered microrobots along predefined paths inside biological environments. This study investigated key microrobot components, including medical applications, actuation systems, control systems, and design schemes. The efficiency of a microrobot is impacted by many factors, including the material, structure, and environment of the microrobot. Furthermore, integrating a hybrid actuation system and multimodal imaging can increase the microrobot’s navigation effect, imaging algorithms, and working environment. In addition, taking into account the human body’s moving distance, autonomous actuating technology could be used to deliver microrobots precisely and quickly to a specific position using a combination of quick approaches.
Bin picking robots require vision sensors capable of recognizing objects in the bin irrespective of the orientation and pose of the objects inside the bin. Bin picking systems are still a challenge to the robot vision research community due to the complexity of segmenting of occluded industrial objects as well as recognizing the segmented objects which have irregular shapes. In this paper a simple object recognition method is presented using singular value decomposition of the object image matrix and a functional link neural network for a bin picking vision system. The results of the functional link net are compared with that of a simple feed forward net. The network is trained using the error back propagation procedure. The proposed method is robust for recognition of objects.
In modern robotic field, many challenges have been appeared, especially in case of a multi-robot system that used to achieve tasks. The challenges are due to the complexity of the multi-robot system, which make the modeling of such system more difficult. The groups of animals in real world are an inspiration for modeling of a multi- individual system such as aggregation of Artemia. Therefore, in this paper, the multi-robot control system based on external stimuli such as light has been proposed, in which the feature of tracking Artemia to the light has been employed for this purpose. The mathematical model of the proposed design is derived and then Simulated by V-rep software. Several experiments are implemented in order to evaluate the proposed design, which is divided into two scenarios. The first scenario includes simulation of the system in situation of attraction of robot to fixed light spot, while the second scenario is the simulation of the system in the situation of the robots tracking of the movable light spot and formed different patterns like a straight-line, circular, and zigzag patterns. The results of experiments appeared that the mobile robot attraction to high-intensity light, in addition, the multi-robot system can be controlled by external stimuli. Finally, the performance of the proposed system has been analyzed.