Page 60 - 2024-Vol20-Issue2
P. 60
56 | Alobaidi & Mikhael
TABLE IX. TABLE XI.
RMSES FOR SPATIAL/ DCT BLOCKS/PROPOSED RMSES FOR SPATIAL/ DCT BLOCKS/PROPOSED
TECHNIQUES FOR BOSSBASE DATABASE(PROPOSED TECHNIQUES FOR BOSSBASE DATABASE( PROPOSED
BLOCKS SIZE IS 16 × 16) BLOCKS SIZE IS 64 × 44)
Image Index Spatial DCT Blocks Proposed Image Index Spatial DCT Blocks Proposed
1 0.043324 3.443646 0.041713 1 0.177251 14.444816 0.174997
2 0.041521 3.446317 0.042071 2 0.175738 14.437805 0.161437
3 0.043324 3.450433 0.045552 3 0.176516 14.446083 0.173554
4 0.042615 3.453333 0.045044 4 0.179262 14.443265 0.176777
5 0.043151 3.447460 0.044362 5 0.173862 14.446958 0.171919
6 0.041521 3.439689 0.042965 6 0.177423 14.465452 0.176992
7 0.044362 3.451074 0.045891 7 0.174213 14.441371 0.174780
8 0.046217 3.448123 0.044023 8 0.176474 14.447889 0.175955
9 0.043497 3.445105 0.045222 9 0.177336 14.443338 0.176562
10 0.046379 3.436676 0.045387 10 0.176216 14.442746 0.173948
TABLE X. TABLE XII.
RMSES FOR SPATIAL/ DCT BLOCKS/PROPOSED RMSES FOR SPATIAL/ DCT BLOCKS/PROPOSED
TECHNIQUES FOR BOSSBASE DATABASE( PROPOSED TECHNIQUES FOR BOSSBASE DATABASE( PROPOSED
BLOCKS SIZE IS 32 × 32) BLOCKS SIZE IS 128 × 128)
Image Index Spatial DCT Blocks Proposed Image Index Spatial DCT Blocks Proposed
1 0.087521 7.256624 0.087258 1 0.352732 28.881922 0.348182
2 0.088904 7.251974 0.083964 2 0.353963 28.819823 0.156946
3 0.088989 7.261676 0.086908 3 0.353833 28.806846 0.167929
4 0.088476 7.253137 0.085761 4 0.351909 28.815145 0.170294
5 0.085849 7.252547 0.087955 5 0.351063 28.841189 0.166724
6 0.088736 7.254067 0.088561 6 0.353791 28.893205 0.171172
7 0.086470 7.256357 0.089588 7 0.352580 28.881184 0.169706
8 0.089844 7.259191 0.090011 8 0.353381 28.880956 0.170605
9 0.088216 7.253918 0.088904 9 0.353143 28.842339 0.170860
10 0.088736 7.244622 0.088131 10 0.352624 28.815215 0.168526
[17] T. Alobaidi and W. B. Mikhael, “Mixed nonorthogonal [21] M. Ste´phane, A wavelet tour of signal processing. Aca-
transforms representation for face recognition,” Circuits, demic press, 1999.
Systems, and Signal Processing, vol. 38, pp. 1684–1694,
2019. [22] R. Araya, “Enriching elementary school mathematical
learning with the steepest descent algorithm,” Mathemat-
[18] M. Plachta, M. Krzemien´, K. Szczypiorski, and A. Jan- ics, vol. 9, no. 11, p. 1197, 2021.
icki, “Detection of image steganography using deep
learning and ensemble classifiers,” Electronics, vol. 11, [23] R. Arun and M. Wasfy B., “Multitrans-
no. 10, 2022. form/multidimensional signal representation,” in
Circuits and Systems, 1993., Proceedings of the 36th
[19] A. S. Ansari, M. S. Mohammadi, and M. T. Parvez, Midwest Symposium on, pp. 1255–1258, IEEE, 1993.
“A multiple-format steganography algorithm for color
images,” IEEE Access, vol. 8, pp. 83926–83939, 2020. [24] U. Sara, M. Akter, and M. S. Uddin, “Image quality as-
sessment through fsim, ssim, mse and psnr—a compara-
[20] W. Burger and M. J. Burge, Digital image processing: an tive study,” Journal of Computer and Communications,
algorithmic introduction using Java. Springer Science vol. 7, no. 3, pp. 8–18, 2019.
& Business Media, 2009.
[25] I.-H. Pan, K.-C. Liu, and C.-L. Liu, “Chi-square de-
tection for pvd steganography,” in 2020 International