Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli- Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.
Vehicular Ad hoc Networks (VANETs), a subsection of Mobile Ad hoc Networks (MANETs), have strong future application prospects. Because topology structures are rapidly changing, determining a route that can guarantee a good Quality of Service (QoS) is a critical issue in VANETs. Routing is a critical component that must be addressed in order to utilize effective communication among vehicles. The purpose obtained from this study is to compare the AODV and GPSR performance in terms of Packet Delivery Ratio, Packet Drop Ratio, Throughput, and End-to-End Delay by applying three scenarios, the first scenario focuses on studying these protocols in terms of QoS while changing the number of vehicles at a constant speed of 40Km/h, and for the second scenario changing the speed value while keeping a constant number of vehicles which is 100, the third involves changing the communication range at a constant speed and vehicle number. This study represents a foundation for researchers to help elaborate on the strength and weaknesses of these two protocols. OMNeT++ in conjunction with SUMO is used for simulation.
Vehicle Ad-hoc Network (VANET) is a type of wireless network that enables communication between vehicles and Road Side Units (RSUs) to improve road safety, traffic efficiency, and service delivery. However, the widespread use of vehicular networks raises serious concerns about users’ privacy and security. Privacy in VANET refers to the protection of personal information and data exchanged between vehicles, RSUs, and other entities. Privacy issues in VANET include unauthorized access to location and speed information, driver and passenger identification, and vehicle tracking. To ensure privacy in VANET, various technologies such as pseudonymization, message authentication, and encryption are employed. When vehicles frequently change their identity to avoid tracking, message authentication ensures messages are received from trusted sources, and encryption is used to prevent unauthorized access to messages. Therefore, researchers have presented various schemes to improve and enhance the privacy efficiency of vehicle networks. This survey article provides an overview of privacy issues as well as an in-depth review of the current state-of-the-art pseudonym-changing tactics and methodologies proposed.