The conventional multilevel inverter (MLI) is divided into three types: diode clamped MLI, cascade H Bridge MLI and flying capacitor MLI. The main disadvantage of these types is the higher required number of components when the number of the levels increases and this results in more switching losses, system higher cost, more complex of control circuit as well as less accuracy. The work in this paper proposes two topologies of nonconventional diode clamping MLI three phase nine levels and eleven levels. The first proposed topology has ten switches and six diodes per phase while the second topology has nine switches and four diodes per phase. The pulse width modulation (PWM) control method is used as a control to gate switches. THD of the two proposed topologies are analyzed and calculated according different values of Modulation index (where the power loss and efficiency are obtained and plotted.
This paper presents a design of a low cost, low loss 31-level multilevel inverter (MLI) topology with a reduce the number of switches and power electronic devices. The increase in the levels of MLI leads to limiting the THD to the desired value. The 31-level output voltage is created using four PV sources with a specific ratio. The SPWM is used to control the gating signals for the switches of MLI. The PV system is integrated into the MLI using a boost converter to maximize the power capacity of the solar cells and the Incremental Conductance (IC) algorithm is employed for maximum power point tracking (MPPT) of the PV system. Simulation results of 31-level MLI indicate the THD of voltage and current waveforms are 3.73% within an acceptable range of IEEE standards.
The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).
In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.
Use of multilevel inverters is becoming popular in the recent years for high power applications. The important feature of these inverters is of having low harmonics content in the output voltage. The switching angles in a multilevel inverter are computed so as to produce an ac output voltage with minimum harmonics. A new control circuit is designed to achieve these angles. This control circuit has the ability to control the RMS output voltage using sinusoidal pulse width modulation (SPWM). The results presented in this work prove the ability of the designed control circuit to gain the required ac output voltage with minimum distortion.
In this work, the phase lock loop PLL-based controller has been adopted for tracking the resonant frequency to achieve maximum power transfer between the power source and the resonant load. The soft switching approach has been obtained to reduce switching losses and improve the overall efficiency of the induction heating system. The jury’s stability test has been used to evaluate the system’s stability. In this article, a multilevel inverter has been used with a series resonant load for an induction heating system to clarify the effectiveness of using it over the conventional full-bridge inverter used for induction heating purposes. Reduced switches five-level inverter has been implemented to minimize switching losses, the number of drive circuits, and the control circuit’s complexity. A comparison has been made between the conventional induction heating system with full bridge inverter and the induction heating system with five level inverter in terms of overall efficiency and total harmonic distortion THD. MATLAB/ SIMULINK has been used for modeling and analysis. The mathematical analysis associated with simulation results shows that the proposed topology and control system performs well.