Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for distribution-networks

Article
Fair and Balance Demand Response application in Distribution Networks

Ibrahim H. Al-Kharsan, Ali.F. Marhoon, Jawad Radhi Mahmood

Pages: 139-151

PDF Full Text
Abstract

The unprogrammed penetration for the loads in the distribution networks make it work in an unbalancing situation that leads to unstable operation for those networks. the instability coming from the imbalance can cause many serious problems like the inefficient use of the feeders and the heat increased in the distribution transformers. The demands response can be regarded as a modern solution for the problem by offering a program to decreasing the consumption behavior for the program's participators in exchange for financial incentives in specific studied duration according to a direct order from the utility. The paper uses a new suggested algorithm to satisfy the direct load control demand response strategy that can be used in solving the unbalancing problem in distribution networks. The algorithm procedure has been simulated in MATLAB 2018 to real data collected from the smart meters that have been installed recently in Baghdad. The simulation results of applying the proposed algorithm on different cases of unbalancing showed that it is efficient in curing the unbalancing issue based on using the demand response strategy.

Article
Distribution Networks Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Hybrid TLBO-BH Algorithm

Arsalan Hadaeghi, Ahmadreza Abdollahi Chirani

Pages: 12-20

PDF Full Text
Abstract

In this paper, a new method based on the combination of the Teaching-learning-based-optimization (TLBO) and Black-hole (BH) algorithm has been proposed for the reconfiguration of distribution networks in order to reduce active power losses and improve voltage profile in the presence of distributed generation sources. The proposed method is applied to the IEEE 33-bus radial distribution system. The results show that the proposed method can be a very promising potential method for solving the reconfiguration problem in distribution systems and has a significant effect on loss reduction and voltage profile improvement.

Article
A Review of methodologies for Fault Location Techniques in Distribution Power System

Ahmed K. Abbas, Mazyed Awan Ahmed Al-Tak

Pages: 27-37

PDF Full Text
Abstract

Since recent societies become more hooked into electricity, a higher level of power supply continuity is required from power systems. The expansion of those systems makes them liable to electrical faults and several failures are raised due to totally different causes, like the lightning strike, power system element failure caused by mechanical aging as well as human mistakes. These conditions impact the stability of the power as well as lead to costly maintenance and loss of output. This article examines the latest technologies and strategies to determine the location of faults in medium voltage distribution systems. The aim is to classify and assess different strategies in order to determine the best recommended models in practice or for further improvement. Several ways to locate failures in distribution networks have therefore been established. Because faults are unpredictable, quick fault location as well as isolating are necessary to reduce the impact of faults in distribution networks as well as removing the emergency condition from the entire system. This study also includes a comprehensive evaluation of several defect location methods depending on the algorithm employed, the input, the test system, the characteristics retrieved, and the degree of complexity. In order to gain further insight into the strengths and limitations of each method and also comparative analysis is carried out. Then the main problems of the fault location methods in distribution network are briefly expounded.

Article
Combination of Optimal Conductor Selection and Capacitor Placement in Radial Distribution Systems Using PSO Method

Mahdi Mozaffari Legha, Farzaneh Ostovar, Mohammad Mozaffari Legha

Pages: 33-41

PDF Full Text
Abstract

In This paper presents an approach for optimal placement and sizing of fixed capacitor banks and also optimal conductor selection in radial distribution networks for the purpose of economic minimization of loss and enhancement of voltage. The objective function includes the cost of power losses, voltage profile, fixed capacitor banks and also type of conductor selection. Constraints include voltage limit, maximum permissible carrying current of conductors, size of available capacitors and type of conductors. The optimization problem is solved by the Imperialism Competitive algorithm method and the size and site capacitor banks and type of conductors is determined. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on actual power network of Kerman city, Iran and the simulation results are presented and discussed.

Article
Optimal Selection of Conductors in Ghaleganj Radial Distribution Systems

Mahdi Mozaffarilegha, Ehsan Moghbeli Damaneh

Pages: 212-218

PDF Full Text
Abstract

Selection of the best type and most suitable size of conductors is essential for designing and optimizing the distribution network. In this paper, an effective method has been proposed for proper selection and incorporation of conductors in the feed part of a radial electricity distribution network considering the depreciation effect of conductors. Increasing the usability of the electric energy of the power grid for the subscribers has been considered per load increment regarding the development of the country. Optimal selection and reconstruction of conductors in the power distribution radio network have been performed through a smart method for minimizing the costs related to annual losses and investment for renovation of lines by imperialist competitive algorithm (ICA) to improve the productivity of the power distribution network. Backward/forward sweep load flow method has been used to solve the load flow problem in the power distribution networks. The mentioned optimization method has been tested on DAZ feeder in Ghaleganj town as test.

Article
Voltage Sag, Voltage Swell and Harmonics Reduction Using Unified Power Quality Conditioner (UPQC) Under Nonlinear Loads

Ahmed Yahyia Qasim, Fadhil Rahma Tahir, Ahmed Nasser B. Alsammak

Pages: 140-150

PDF Full Text
Abstract

In light of the widespread usage of power electronics devices, power quality (PQ) has become an increasingly essential factor. Due to nonlinear characteristics, the power electronic devices produce harmonics and consume lag current from the utility. The UPQC is a device that compensates for harmonics and reactive power while also reducing problems related to voltage and current. In this work, a three-phase, three-wire UPQC is suggested to reduce voltage-sag, voltage-swell, voltage and current harmonics. The UPQC is composed of shunt and series Active Power Filters (APFs) that are controlled utilizing the Unit Vector Template Generation (UVTG) technique. Under nonlinear loads, the suggested UPQC system can be improved PQ at the point of common coupling (PCC) in power distribution networks. The simulation results show that UPQC reduces the effect of supply voltage changes and harmonic currents on the power line under nonlinear loads, where the Total Harmonic Distortion (THD) of load voltages and source currents obtained are less than 5%, according to the IEEE-519 standard.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.