Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for detection

Article
A Fast and Accurate Method for Power System Voltage Sag Detection

Adnan Romi Diwan, Khalid M. Abdulhassan, Falih M. Alnahwi

Pages: 78-84

PDF Full Text
Abstract

In order to mitigate the effect of voltage sag on sensitive loads, a dynamic voltage restorer (DVR) should be used for this purpose. The DVR should be accompanied with a fast and accurate sag detection circuit or algorithm to determine the sag information as quickly as possible with an acceptable precision. This paper presents the numerical matrix method as a distinctive candidate for voltage sag detection. The design steps of this method are demonstrated in detail in this work. The simulation results exhibit the superiority of this technique over the other detection techniques in term of the speed and accuracy of detection, simplicity in implementation, and the memory size. The results also accentuate the recognition capability of the proposed method in distinguishing different types of voltage sag by testing three different voltage sag scenarios.

Article
Local and Global Outlier Detection Algorithms in Unsupervised Approach: A Review

Ayad Mohammed Jabbar

Pages: 76-87

PDF Full Text
Abstract

The problem of outlier detection is one of the most important issues in the field of analysis due to its applicability in several famous problem domains, including intrusion detection, security, banks, fraud detection, and discovery of criminal activities in electronic commerce. Anomaly detection comprises two main approaches: supervised and unsupervised approach. The supervised approach requires pre-defined information, which is defined as the type of outliers, and is difficult to be defined in some applications. Meanwhile, the second approach determines the outliers without human interaction. A review of the unsupervised approach, which shows the main advantages and the limitations considering the studies performed in the supervised approach, is introduced in this paper. This study indicated that the unsupervised approach suffers from determining local and global outlier objects simultaneously as the main problem related to algorithm parameterization. Moreover, most algorithms do not rank or identify the degree of being an outlier or normal objects and required different parameter settings by the research. Examples of such parameters are the radius of neighborhood, number of neighbors within the radius, and number of clusters. A comprehensive and structured overview of a large set of interesting outlier algorithms, which emphasized the outlier detection limitation in the unsupervised approach, can be used as a guideline for researchers who are interested in this field.

Article
Epileptic detection based on deep learning: A review

Ola M. Assim, Ahlam F. Mahmood

Pages: 115-126

PDF Full Text
Abstract

Epilepsy, a neurological disorder characterized by recurring seizures, necessitates early and precise detection for effective management. Deep learning techniques have emerged as powerful tools for analyzing complex medical data, specifically electroencephalogram (EEG) signals, advancing epileptic detection. This review comprehensively presents cutting-edge methodologies in deep learning-based epileptic detection systems. Beginning with an overview of epilepsy’s fundamental concepts and their implications for individuals and healthcare are present. This review then delves into deep learning principles and their application in processing EEG signals. Diverse research papers to know the architectures—convolutional neural networks, recurrent neural networks, and hybrid models—are investigated, emphasizing their strengths and limitations in detecting epilepsy. Preprocessing techniques for improving EEG data quality and reliability, such as noise reduction, artifact removal, and feature extraction, are discussed. Present performance evaluation metrics in epileptic detection, such as accuracy, sensitivity, specificity, and area under the curve, are provided. This review anticipates future directions by highlighting challenges such as dataset size and diversity, model interpretability, and integration with clinical decision support systems. Finally, this review demonstrates how deep learning can improve the precision, efficiency, and accessibility of early epileptic diagnosis. This advancement allows for more timely interventions and personalized treatment plans, potentially revolutionizing epilepsy management.

Article
A Novel Quantum-Behaved Future Search Algorithm for the Detection and Location of Faults in Underground Power Cables Using ANN

Hamzah Abdulkhaleq Naji, Rashid Ali Fayadh, Ammar Hussein Mutlag

Pages: 226-244

PDF Full Text
Abstract

This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned algorithms from existing literature. Quantitatively, the QFSA outperformed its counterparts in a majority of the tested scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at varying distances. The ANN structure had two primary units: one for fault location and another for detection. These units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of the QFSA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing fault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of QFSA-ANN’s superiority over conventional methods.

Article
Multiple Object Detection-Based Machine Learning Techniques

Athraa S. Hasan, Jianjun Yi, Haider M. AlSabbagh, Liwei Chen

Pages: 149-159

PDF Full Text
Abstract

Object detection has become faster and more precise due to improved computer vision systems. Many successful object detections have dramatically improved owing to the introduction of machine learning methods. This study incorporated cutting- edge methods for object detection to obtain high-quality results in a competitive timeframe comparable to human perception. Object-detecting systems often face poor performance issues. Therefore, this study proposed a comprehensive method to resolve the problem faced by the object detection method using six distinct machine learning approaches: stochastic gradient descent, logistic regression, random forest, decision trees, k-nearest neighbor, and naive Bayes. The system was trained using Common Objects in Context (COCO), the most challenging publicly available dataset. Notably, a yearly object detection challenge is held using COCO. The resulting technology is quick and precise, making it ideal for applications requiring an object detection accuracy of 97%.

Article
Internet of Things Based Oil Pipeline Spill Detection System Using Deep Learning and LAB Colour Algorithm

Muhammad H. Obaid, Ali H. Hamad

Pages: 137-148

PDF Full Text
Abstract

Given the role that pipelines play in transporting crude oil, which is considered the basis of the global economy and across different environments, hundreds of studies revolve around providing the necessary protection for it. Various technologies have been employed in this pursuit, differing in terms of cost, reliability, and efficiency, among other factors. Computer vision has emerged as a prominent technique in this field, albeit requiring a robust image-processing algorithm for spill detection. This study employs image segmentation techniques to enable the computer to interpret visual information and images effectively. The research focuses on detecting spills in oil pipes caused by leakage, utilizing images captured by a drone equipped with a Raspberry Pi and Pi camera. These images, along with their global positioning system (GPS) location, are transmitted to the base station using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol. At the base station, deep learning techniques, specifically Holistically-Nested Edge Detection (HED) and extreme inception (Xception) networks, are employed for image processing to identify contours. The proposed algorithm can detect multiple contours in the images. To pinpoint a contour with a black color, representative of an oil spill, the CIELAB color space (LAB) algorithm effectively removes shadow effects. If a contour is detected, its area and perimeter are calculated to determine whether it exceeds a certain threshold. The effectiveness of the proposed system was tested on Iraqi oil pipeline systems, demonstrating its capability to detect spills of different sizes.

Article
Real Time Sticky Bomb Detection System Based on Compass Device and Arduino Board

Sameer Hameed Majeed, Noor Kareem Jumaa, Auday A.H. Mohamad

Pages: 46-52

PDF Full Text
Abstract

This paper presents a new strategy of sticky bomb detection. The detection strategy is based on measuring the magnetic field around the targeted car using compass device. A compass measure the earth gravitation of the car as (x,y,z) coordination , a threshold value of magnetic fields around the targeted car are recorded. If a difference is detected with any (x,y,z) coordination, an alert SMS message is sent to the car's owner. The detection system presented in this paper has been implemented based on Arduino board. The alarm signal is a Short Message Service (SMS) through Global System for Mobile Communication (GSM) module. The proposed method can gives the people of unstable countries a chance to discover whether their cars have been trapped with an IED bomb or their car still safe.

Article
Machine Learning Approach Based on Smart Ball COMSOL Multiphysics Simulation for Pipe Leak Detection

Marwa H. Abed, Wasan A. Wali, Musaab Alaziz

Pages: 100-110

PDF Full Text
Abstract

Due to the changing flow conditions during the pipeline's operation, several locations of erosion, damage, and failure occur. Leak prevention and early leak detection techniques are the best pipeline risk mitigation measures. To reduce detection time, pipeline models that can simulate these breaches are essential. In this study, numerical modeling using COMSOL Multiphysics is suggested for different fluid types, velocities, pressure distributions, and temperature distributions. The system consists of 12 meters of 8-inch pipe. A movable ball with a diameter of 5 inches is placed within. The findings show that dead zones happen more often in oil than in gas. Pipe insulation is facilitated by the gas phase's thermal inefficiency (thermal conductivity). The fluid mixing is improved by 2.5 m/s when the temperature is the lowest. More than water and gas, oil viscosity and dead zones lower maximum pressure. Pressure decreases with maximum velocity and vice versa. The acquired oil data set is utilized to calibrate the Support Vector Machine and Decision Tree techniques using MATLAB R2021a, ensuring the precision of the measurement. The classification result reveals that the Support Vector Machine (SVM) and Decision Tree (DT) models have the best average accuracy, which is 98.8%, and 99.87 %, respectively.

Article
License Plate Detection and Recognition in Unconstrained Environment Using Deep Learning

Heba Hakim, Zaineb Alhakeem, Hanadi Al-Musawi, Mohammed A. Al-Ibadi, Alaa Al-Ibadi

Pages: 210-220

PDF Full Text
Abstract

Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.

Article
Expanding New Covid-19 Data with Conditional Generative Adversarial Networks

Haneen Majid, Khawla Hussein Ali

Pages: 103-110

PDF Full Text
Abstract

COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.

Article
PERFORMANCE OF POLARIZATION SHIFT KEYING SYSTEM INCORPORATING DIRECT DETECTION JONES MATRIX RECEIVER

R. S. Fyath, M. T. Rashid

Pages: 138-152

PDF Full Text
Abstract

This paper presents a comprehensive analysis of a new direct detection polarization shift keying (DD POLSK) receiver structure that is based on Jones matrix technique. The bit - error rate (BER) characteristics of the receiver is examined under system impairments and the results are compared with those related to other DD POLSK receivers reported in the literature. The results indicate that Jones matrix receiver is less sensitive to optical amplifier gain variation when compared with other receivers.

Article
An Assessment of Ensemble Voting Approaches, Random Forest, and Decision Tree Techniques in Detecting Distributed Denial of Service (DDoS) Attacks

Mustafa S. Ibrahim Alsumaidaie, Khattab M. Ali Alheeti, Abdul Kareem Alaloosy

Pages: 16-24

PDF Full Text
Abstract

The reliance on networks and systems has grown rapidly in contemporary times, leading to increased vulnerability to cyber assaults. The Distributed Denial-of-Service (Distributed Denial of Service) attack, a threat that can cause great financial liabilities and reputation damage. To address this problem, Machine Learning (ML) algorithms have gained huge attention, enabling the detection and prevention of DDOS (Distributed Denial of Service) Attacks. In this study, we proposed a novel security mechanism to avoid Distributed Denial of Service attacks. Using an ensemble learning methodology aims to it also can differentiate between normal network traffic and the malicious flood of Distributed Denial of Service attack traffic. The study also evaluates the performance of two well-known ML algorithms, namely, the decision tree and random forest, which were used to execute the proposed method. Tree in defending against Distributed Denial of Service (DDoS) attacks. We test the models using a publicly available dataset called TIME SERIES DATASET FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION. We compare the performance of models using a list of evaluation metrics developing the Model. This step involves fetching the data, preprocessing it, and splitting it into training and testing subgroups, model selection, and validation. When applied to a database of nearly 11,000 time series; in some cases, the proposed approach manifested promising results and reached an Accuracy (ACC) of up to 100 % in the dataset. Ultimately, this proposed method detects and mitigates distributed denial of service. The solution to securing communication systems from this increasing cyber threat is this: preventing attacks from being successful.

Article
Short Circuit Faults Identification and Localization in IEEE 34 Nodes Distribution Feeder Based on the Theory of Wavelets

Sara J. Authafa, Khalid M. Abdul-Hassan

Pages: 65-79

PDF Full Text
Abstract

In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.

Article
Securing Wireless Sensor Network (WSN) Using Embedded Intrusion Detection Systems

Qutaiba I. Ali* Sahar Lazim Enaam Fathi

Pages: 54-64

PDF Full Text
Abstract

This paper focuses on designing distributed wireless sensor network gateways armed with Intrusion Detection System (IDS). The main contribution of this work is the attempt to insert IDS functionality into the gateway node (UBICOM IP2022 network processor chip) itself. This was achieved by building a light weight signature based IDS based on the famous open source SNORT IDS. Regarding gateway nodes, as they have limited processing and energy constrains, the addition of further tasks (the IDS program) may affects seriously on its performance, so that, the current design takes these constrains into consideration as a priority and use a special protocol to achieve this goal. In order to optimize the performance of the gateway nodes, some of the preprocessing tasks were offloaded from the gateway nodes to a suggested classification and processing server and a new searching algorithm was suggested. Different measures were taken to validate the design procedure and a detailed simulation model was built to discover the behavior of the system in different environments.

Article
Enhancing PV Fault Detection Using Machine Learning: Insights from a Simulated PV System

Halah Sabah Muttashar, Amina Mahmoud Shakir

Pages: 126-133

PDF Full Text
Abstract

Recently, numerous researches have emphasized the importance of professional inspection and repair in case of suspected faults in Photovoltaic (PV) systems. By leveraging electrical and environmental features, many machine learning models can provide valuable insights into the operational status of PV systems. In this study, different machine learning models for PV fault detection using a simulated 0.25MW PV power system were developed and evaluated. The training and testing datasets encompassed normal operation and various fault scenarios, including string-to-string, on-string, and string-to-ground faults. Multiple electrical and environmental variables were measured and exploited as features, such as current, voltage, power, temperature, and irradiance. Four algorithms (Tree, LDA, SVM, and ANN) were tested using 5-fold cross-validation to identify errors in the PV system. The performance evaluation of the models revealed promising results, with all algorithms demonstrating high accuracy. The Tree and LDA algorithms exhibited the best performance, achieving accuracies of 99.544% on the training data and 98.058% on the testing data. LDA achieved perfect accuracy (100%) on the testing data, while SVM and ANN achieved 95.145% and 89.320% accuracy, respectively. These findings underscore the potential of machine learning algorithms in accurately detecting and classifying various types of PV faults. .

Article
A Hybrid Lung Cancer Model for Diagnosis and Stage Classification from Computed Tomography Images

Abdalbasit Mohammed Qadir, Peshraw Ahmed Abdalla, Dana Faiq Abd

Pages: 266-274

PDF Full Text
Abstract

Detecting pulmonary cancers at early stages is difficult but crucial for patient survival. Therefore, it is essential to develop an intelligent, autonomous, and accurate lung cancer detection system that shows great reliability compared to previous systems and research. In this study, we have developed an innovative lung cancer detection system known as the Hybrid Lung Cancer Stage Classifier and Diagnosis Model (Hybrid-LCSCDM). This system simplifies the complex task of diagnosing lung cancer by categorizing patients into three classes: normal, benign, and malignant, by analyzing computed tomography (CT) scans using a two-part approach: First, feature extraction is conducted using a pre-trained model called VGG-16 for detecting key features in lung CT scans indicative of cancer. Second, these features are then classified using a machine learning technique called XGBoost, which sorts the scans into three categories. A dataset, IQ-OTH/NCCD - Lung Cancer, is used to train and evaluate the proposed model to show its effectiveness. The dataset consists of the three aforementioned classes containing 1190 images. Our suggested strategy achieved an overall accuracy of 98.54%, while the classification precision among the three classes was 98.63%. Considering the accuracy, recall, and precision as well as the F1-score evaluation metrics, the results indicated that when using solely computed tomography scans, the proposed (Hybrid-LCSCDM) model outperforms all previously published models.

Article
Performance Evaluation of DHT Based Optical OFDM for IM/DD Transmission Over Diffused Multipath Optical Wireless Channel

Hussein A. Leftah,

Pages: 72-75

PDF Full Text
Abstract

Optical OFDM based on discrete Hartley transform (DHT-O-OFDM) has been proposed for large-size data mapping intensity modulation direct detection (IM/DD) scheme as an alter- native to the conventional optical OFDM. This paper presents a performance analysis and evaluation of IM/DD optical DC-biased DHT-O-OFDM over diffused multipath optical wireless channels. Zero-padding guard interval along with minimum mean-square error (MMSE) equalizer are used in electrical domain after the direct detection to remove the intersymbol interference (ISI) and eliminate the deleterious effects of the multipath channels. Simulation results show that the ZP-MMSE can effectively reduce the effects of multipath channels. The results also show that the effects of optical wireless multipath channel become more serious as the data signaling order increases.

Article
A Dataset for Kinship Estimation from Image of Hand Using Machine Learning

Sarah Ibrahim Fathi, Mazin H. Aziz

Pages: 127-136

PDF Full Text
Abstract

Kinship (Familial relationships) detection is crucial in many fields and has applications in biometric security, adoption, forensic investigations, and more. It is also essential during wars and natural disasters like earthquakes since it may aid in reunion, missing person searches, establishing emergency contacts, and providing psychological support. The most common method of determining kinship is DNA analysis which is highly accurate. Another approach, which is noninvasive, uses facial photos with computer vision and machine learning algorithms for kinship estimation. Each part of the Human -body has its own embedded information that can be extracted and adopted for identification, verification, or classification of that person. Kinship recognition is based on finding traits that are shared by every family. We investigate the use of hand geometry for kinship detection, which is a new approach. Because of the available hand image Datasets do not contain kinship ground truth; therefore, we created our own dataset. This paper describes the tools, methodology, and details of the collected MKH, which stands for the Mosul Kinship Hand, images dataset. The images of MKH dataset were collected using a mobile phone camera with a suitable setup and consisted of 648 images for 81 individuals from 14 families (8 hand situations per person). This paper also presents the use of this dataset in kinship prediction using machine learning. Google MdiaPipe was used for hand detection, segmentation, and geometrical key points finding. Handcraft feature extraction was used to extract 43 distinctive geometrical features from each image. A neural network classifier was designed and trained to predict kinship, yielding about 93% prediction accuracy. The results of this novel approach demonstrated that the hand possesses biometric characteristics that may be used to establish kinship, and that the suggested method is a promising way as a kinship indicator.

Article
Series and Parallel Arc Fault Detection Based on Discrete Wavelet vs. FFT Techniques

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. Khudair

Pages: 38-47

PDF Full Text
Abstract

Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.

Article
Efficient Optical OFDM System Resilience to Indoor Wireless Multipath Channels

Hussein A. Leftah

Pages: 78-83

PDF Full Text
Abstract

This article presents a developed intensity modulation/direct detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM). More precisely, the presented C-O-OFDM is based on the C-transform as a unitary orthogonal transform instead of the state-of-the-art discrete Fourier transform (DFT). Due to the properties of the real C-transform, Hermitian symmetry (HS) is not required to produce real OFDM samples. Therefore, the proposed scheme supports twice the input symbols compared to conventional DFT-based OFDM system. Real data mapping and DC bias technology is considered to evaluate the performance of the presented scheme over optical wireless multipath. The simulation results shows that the proposed C-O-OFDM is more resilience to multipath phenomena than the competitive DFT-O-OFDM and DHT-O-OFDM schemes for similar bit rate. The proposed scheme achieves about 22 dB signal-to-noise ratio (SNR) gain in comparison with the DFT-O-OFDM and about 2.5dB SNR gain in comparison with the DHT-O-OFDM scheme.

Article
Series and Parallel Arc Fault Detection in Electrical Buildings Based on Discrete Wavelet Theory

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. K. Al-Atbee

Pages: 94-101

PDF Full Text
Abstract

Electrical issues such as old wires and faulty connections are the most common causes of arc faults. Arc faults cause electrical fires by generating high temperatures and discharging molten metal. Every year, such fires cause a considerable deal of destruction and loss. This paper proposes a new method for detecting residential series and parallel arc faults. A simulation model for the arc is employed to simulate the arc faults in series and parallel circuits. The fault features are then retrieved using a signal processing approach called Discrete Wavelet Transform (DWT) designed in MATLAB/Simulink based on the fault detection algorithm. Then db2 and one level were found appropriate mother and level of wavelet transform for extracting arc-fault features. MATLAB Simulink was used to build and simulate the arc-fault model.

Article
Comparison of Complex-Valued Independent Component Analysis Algorithms for EEG Data

Ali Al-Saegh

Pages: 1-12

PDF Full Text
Abstract

Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex- valued ICA algorithm. In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain activity and not to artifact activity. The performance of locating a dipole for each separated independent component is considered in the comparison as well. Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain.

Article
Effect of System Impairment on the Performance of a Polarization Shift Keying Coherent Detection System Incorporating Jones Matrix Inversion Technique

R. S. Fyath, M. T. Rashid

Pages: 122-137

PDF Full Text
Abstract

Recently, Jones matrix parameter shift keying (JMPSK) technique has been proposed in the literature to achieve phase noise and polarization state insensitive optical communication systems. The aim of this paper is to examine the performance of this system in the presence of system impairments, namely channel dichroism. A comprehensive analysis is presented to assess the effect of dichroism on the bit-error-rate (BER) characteristics of JMPSK receiver.

Article
Feature Deep Learning Extraction Approach for Object Detection in Self-Driving Cars

Namareq Odey, Ali Marhoon

Pages: 62-69

PDF Full Text
Abstract

Self-driving cars are a fundamental research subject in recent years; the ultimate goal is to completely exchange the human driver with automated systems. On the other hand, deep learning techniques have revealed performance and effectiveness in several areas. The strength of self-driving cars has been deeply investigated in many areas including object detection, localization as well, and activity recognition. This paper provides an approach to deep learning; which combines the benefits of both convolutional neural network CNN together with Dense technique. This approach learns based on features extracted from the feature extraction technique which is linear discriminant analysis LDA combined with feature expansion techniques namely: standard deviation, min, max, mod, variance and mean. The presented approach has proven its success in both testing and training data and achieving 100% accuracy in both terms.

Article
Enhancement the Sensitivity of waveguide Coated ZnO thin films: Role of Plasma irradiation

Marwan Hafeedh Younus, Muayad Abdullah Ahmed, Ghazwan Ghazi Ali

Pages: 93-98

PDF Full Text
Abstract

In this study, Dielectric Barrier Discharge plasma irradiation (DBD) is applied to treatment and improve the properties of the ZnO thin film deposited on the glass substrate as a sensor for glucose detection. The ZnO is prepared via a sol-gel method in this work. ZnO is irradiated by the DBD high voltage plasma to improve of its sensitivity. The optical properties, roughness and surface morphology of the waveguide coated ZnO thin films before and after DBD plasma irradiation are studied in this work. The results showed a significant improvement in the performance of the sensor in the detection of concentrations of glucose solution after plasma irradiation. Where the largest value in sensitivity was equal to 62.7 when the distance between electrodes was 5 cm compared to the sensitivity before irradiation, which was equal to 92. The high response showed in results demonstrating that the fabricated waveguide coated ZnO after plasma irradiation has the excellent potential application as a sensor to detect small concentration of glucose solution.

Article
Security Issues of Solar Energy Harvesting Road Side Unit (RSU)

Qutaiba I. Ali

Pages: 18-31

PDF Full Text
Abstract

Vehicular network security had spanned and covered a wide range of security related issues. However solar energy harvesting Road Side Unit (RSU) security was not defined clearly, it is this aspect that is considered in this paper. In this work, we will suggest an RSU security model to protect it against different internal and external threats. The main goal is to protect RSU specific data (needed for its operation) as well as its functionality and accessibility. The suggested RSU security model must responds to many objectives, it should ensure that the administrative information exchanged is correct and undiscoverable (information authenticity and privacy), the source (e.g., VANET server) is who he claims to be (message integrity and source authentication) and the system is robust and available (using Intrusion Detection System (IDS)). In this paper, we suggest many techniques to strength RSU security and they were prototyped using an experimental model based on Ubicom IP2022 network processor development kit .

Article
A Study on Pre-processing Algorithms for Metal Parts Inspection

Haider Sh. Hashim, Anton Satria Prabuwono, Siti Norul Huda Sheikh Abdullah

Pages: 1-4

PDF Full Text
Abstract

Pre-processing is very useful in a variety of situations since it helps to suppress information that is not related to the exact image processing or analysis task. Mathematical morphology is used for analysis, understanding and image processing. It is an influential method in the geometric morphological analysis and image understanding. It has befallen a new theory in the digital image processing domain. Edges detection and noise reduction are a crucial and very important pre-processing step. The classical edge detection methods and filtering are less accurate in detecting complex edge and filtering various types of noise. This paper proposed some useful mathematic morphological techniques to detect edge and to filter noise in metal parts image. The experimental result showed that the proposed algorithm helps to increase accuracy of metal parts inspection system.

Article
A Comprehensive Review of Image Segmentation Techniques

Salwa Khalid Abdulateef, Mohanad Dawood Salman

Pages: 166-175

PDF Full Text
Abstract

Image segmentation is a wide research topic; a huge amount of research has been performed in this context. Image segmentation is a crucial procedure for most object detection, image recognition, feature extraction, and classification tasks depend on the quality of the segmentation process. Image segmentation is the dividing of a specific image into a numeral of homogeneous segments; therefore, the representation of an image into simple and easy forms increases the effectiveness of pattern recognition. The effectiveness of approaches varies according to the conditions of objects arrangement, lighting, shadow and other factors. However, there is no generic approach for successfully segmenting all images, where some approaches have been proven to be more effective than others. The major goal of this study is to provide summarize of the disadvantages and the advantages of each of the reviewed approaches of image segmentation.

Article
Detection of Covid-19 Using CAD System Depending on Chest X-Ray and Machine Learning Techniques

Sadeer Alaa Thamer, Mshari A. Alshmmri

Pages: 75-81

PDF Full Text
Abstract

SARS-COV-2 (severe acute respiratory syndrome coronavirus-2) has caused widespread mortality. Infected individuals had specific radiographic visual features and fever, dry cough, lethargy, dyspnea, and other symptoms. According to the study, the chest X-ray (CXR) is one of the essential non-invasive clinical adjuncts for detecting such visual reactions associated with SARS-COV-2. Manual diagnosis is hindered by a lack of radiologists' availability to interpret CXR images and by the faint appearance of illness radiographic responses. The paper describes an automatic COVID detection based on the deep learning- based system that applied transfer learning techniques to extract features from CXR images to distinguish. The system has three main components. The first part is extracting CXR features with MobileNetV2. The second part used the extracted features and applied Dimensionality reduction using LDA. The final part is a Classifier, which employed XGBoost to classify dataset images into Normal, Pneumonia, and Covid-19. The proposed system achieved both immediate and high results with an overall accuracy of 0.96%, precision of 0.95%, recall of 0.94%, and F1 score of 0.94%.

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

Article
Iraqi License Plate Detection and Segmentation based on Deep Learning

Ghida Yousif Abbass, Ali Fadhil Marhoon

Pages: 102-107

PDF Full Text
Abstract

Nowadays, the trend has become to utilize Artificial Intelligence techniques to replace the human's mind in problem solving. Vehicle License Plate Recognition (VLPR) is one of these problems in which the computer outperforms the human being in terms of processing speed and accuracy of results. The emergence of deep learning techniques enhances and simplifies this task. This work emphasis on detecting the Iraqi License Plates based on SSD Deep Learning Algorithm. Then Segmenting the plate using horizontal and vertical shredding. Finally, the K-Nearest Neighbors (KNN) algorithm utilized to specify the type of car. The proposed system evaluated by using a group of 500 different Iraqi Vehicles. The successful results show that 98% regarding the plate detection, and 96% for segmenting operation.

Article
Maze Maneuvering and Colored Object Tracking for Differential Drive Mobile Robot

Ammar A. Aldair, Auday Al-Mayyahi

Pages: 47-52

PDF Full Text
Abstract

In maze maneuvering, it is needed for a mobile robot to feasibly plan the shortest path from its initial posture to the desired destination in a given environment. To achieve that, the mobile robot is combined with multiple distance sensors to assist the navigation while avoiding obstructing obstacles and following the shortest path toward the target. Additionally, a vision sensor is used to detect and track colored objects. A new algorithm is proposed based on different type of utilized sensors to aid the maneuvering of differential drive mobile robot in an unknown environment. In the proposed algorithm, the robot has the ability to traverse surrounding hindrances and seek for a particular object based on its color. Six infrared sensors are used to detect any located obstacles and one color detection sensor is used to locate the colored object. The Mobile Robotics Simulation Toolbox in Matlab is used to test the proposed algorithm. Three different scenarios are studied to prove the efficiency of the proposed algorithm. The simulation results demonstrate that the mobile robot has successfully accomplished the tracking and locating of a colored object without collision with hurdles.

Article
Variable Speed Controller of Wind Generation System using Model predictive Control and NARMA Controller

Raheel Jawad, Majda Ahmed, Hussein M. Salih, Yasser Ahmed Mahmood

Pages: 43-52

PDF Full Text
Abstract

This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.

Article
The UKF Based Approach to Improving Attitude and Position of Quadcopter Through Autonomous and Non-Autonomous Flight

Ahmed Abdulmahdi Abdulkareem, Basil H. Jasim, Safanah Mudheher Raafat

Pages: 49-57

PDF Full Text
Abstract

The gyroscope and accelerometer are the basic sensors used by most Unmanned Aerial Vehicle (UAV) like quadcopter to control itself. In this paper, the fault detection of measured angular and linear states by gyroscope and accelerometer sensors are present. Uncertainties in measurement and physical sensors itself are the main reasons that lead to generate noise and cause the fault in measured states. Most previous solutions are process angular or linear states to improving the performance of quadcopter. Also, in most of the previous solutions, KF and EKF filters are used, which are inefficient in dealing with high nonlinearity systems such as quadcopter. The proposed algorithm is developed by the robust nonlinear filter, Unscented Kalman Filter (UKF), as an angular and linear estimation filter. Simulation results show that the proposed algorithm is efficient to decrease the effect of sensors noise and estimate accurate angular and linear states. Also, improving the stability and performance properties of the quadcopter. In addition, the new algorithm leads to increasing the range of nonlinearity movements that quadcopter can perform it.

Article
Design and Implementation of an Injury Detection System for Corona Tracker

Israa S. Al-Furati, Alaa I. AL-Mayoof

Pages: 15-20

PDF Full Text
Abstract

Today, the trends are the robotics field since it is used in too many environments that are very important in human life. Covid 19 disease is now the deadliest disease in the world, and most studies are being conducted to find solutions and avoid contracting it. The proposed system senses the presence according to a specific injury to warn of it and transfer it to the specialist doctor. This system is designed to work in service departments such as universities, institutes, and all state departments serving citizens. This system consists of two parts: the first is fixed and placed on the desk and the other is mobile within a special robot that moves to perform the required task. This system was tested at the University of Basrah within the college of engineering, department of electrical Engineering, on teaching staff, students, and staff during the period of final academic exams. The presence of such a device is considered a warning according to a specific condition and isn’t a treatment for it, as the treatment is prescribed by the specialist doctor. It is found that the average number of infected cases is about 3% of the total number of students and the teaching staff and the working staff. The results were documented in special tables that go to the dean of the college with the attendance tables to know the daily health status of the students.

Article
A Survey on Segmentation Techniques for Image Processing

Wala’a N. Jasim, Rana Jassim Mohammed

Pages: 73-93

PDF Full Text
Abstract

The segmentation methods for image processing are studied in the presented work. Image segmentation can be defined as a vital step in digital image processing. Also, it is used in various applications including object co-segmentation, recognition tasks, medical imaging, content based image retrieval, object detection, machine vision and video surveillance. A lot of approaches were created for image segmentation. In addition, the main goal of segmentation is to facilitate and alter the image representation into something which is more important and simply to be analyzed. The approaches of image segmentation are splitting the images into a few parts on the basis of image’s features including texture, color, pixel intensity value and so on. With regard to the presented study, many approaches of image segmentation are reviewed and discussed. The techniques of segmentation might be categorized into six classes: First, thresholding segmentation techniques such as global thresholding (iterative thresholding, minimum error thresholding, otsu's, optimal thresholding, histogram concave analysis and entropy based thresholding), local thresholding (Sauvola’s approach, T.R Singh’s approach, Niblack’s approaches, Bernsen’s approach Bruckstein’s and Yanowitz method and Local Adaptive Automatic Binarization) and dynamic thresholding. Second, edge-based segmentation techniques such as gray-histogram technique, gradient based approach (laplacian of gaussian, differential coefficient approach, canny approach, prewitt approach, Roberts approach and sobel approach). Thirdly, region based segmentation approaches including Region growing techniques (seeded region growing (SRG), statistical region growing, unseeded region growing (UsRG)), also merging and region splitting approaches. Fourthly, clustering approaches, including soft clustering (fuzzy C-means clustering (FCM)) and hard clustering (K-means clustering). Fifth, deep neural network techniques such as convolution neural network, recurrent neural networks (RNNs), encoder-decoder and Auto encoder models and support vector machine. Finally, hybrid techniques such as evolutionary approaches, fuzzy logic and swarm intelligent (PSO and ABC techniques) and discusses the pros and cons of each method.

Article
Practical Implementation of an Indoor Robot Localization and Identification System using an Array of Anchor Nodes

Israa Sabri A. AL-Forati, Abdulmuttalib T. Rashid

Pages: 9-16

PDF Full Text
Abstract

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi- robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.

Article
A Comparison of COIVD-19 Cases Classification Based on Machine Learning Approaches

Oqbah Salim Atiyah, Saadi Hamad Thalij

Pages: 139-143

PDF Full Text
Abstract

COVID-19 emerged in 2019 in china, the worldwide spread rapidly, and caused many injuries and deaths among humans. Accurate and early detection of COVID-19 can ensure the long-term survival of patients and help prohibit the spread of the epidemic. COVID-19 case classification techniques help health organizations quickly identify and treat severe cases. Algorithms of classification are one the essential matters for forecasting and making decisions to assist the diagnosis, early identification of COVID-19, and specify cases that require to intensive care unit to deliver the treatment at appropriate timing. This paper is intended to compare algorithms of classification of machine learning to diagnose COVID-19 cases and measure their performance with many metrics, and measure mislabeling (false-positive and false-negative) to specify the best algorithms for speed and accuracy diagnosis. In this paper, we focus onto classify the cases of COVID-19 using the algorithms of machine learning. we load the dataset and perform dataset preparation, pre-processing, analysis of data, selection of features, split of data, and use of classification algorithm. In the first using four classification algorithms, (Stochastic Gradient Descent, Logistic Regression, Random Forest, Naive Bayes), the outcome of algorithms accuracy respectively was 99.61%, 94.82% ,98.37%,96.57%, and the result of execution time for algorithms respectively were 0.01s, 0.7s, 0.20s, 0.04. The Stochastic Gradient Descent of mislabeling was better. Second, using four classification algorithms, (eXtreme-Gradient Boosting, Decision Tree, Support Vector Machines, K_Nearest Neighbors), the outcome of algorithms accuracy was 98.37%, 99%, 97%, 88.4%, and the result of execution time for algorithms respectively were 0.18s, 0.02s, 0.3s, 0.01s. The Decision Tree of mislabeling was better. Using machine learning helps improve allocate medical resources to maximize their utilization. Classification algorithm of clinical data for confirmed COVID-19 cases can help predict a patient's need to advance to the ICU or not need by using a global dataset of COVID-19 cases due to its accuracy and quality.

Article
On the Performance of Wireless-Powered NOMA Communication Networks

Noor K. Breesam, Walid A. Al-Hussaibi, Falah H. Ali

Pages: 160-169

PDF Full Text
Abstract

In different modern and future wireless communication networks, a large number of low-power user equipment (UE) devices like Internet of Things, sensor terminals, and smart modules have to be supported over constrained power and bandwidth resources. Therefore, wireless-powered communication (WPC) is considered a promising technology for varied applications in which the energy harvesting (EH) from radio frequency radiations is exploited for data transmission. This requires efficient resource allocation schemes to optimize the performance of WPC and prolong the network lifetime. In this paper, harvest-then-transmit-based WP non-orthogonal multiple access (WP-NOMA) system is designed with time-split (TS) and power control (PC) allocation strategies. To evaluate the network performance, the sum rate and UEs’ rates expressions are derived considering power-domain NOMA with successive interference cancellation detection. For comparison purposes, the rate performance of the conventional WP orthogonal multiple access (WP-OMA) is derived also considering orthogonal frequency-division multiple access and time-division multiple access schemes. Intensive investigations are conducted to obtain the best TS and PC resource parameters that enable maximum EH for higher data transmission rates compared with the reference WP-OMA techniques. The achieved outcomes demonstrate the effectiveness of designed resource allocation approaches in terms of the realized sum rate, UE’s rate, rate region, and fairness without distressing the restricted power of far UEs.

Article
Classification Algorithms for Determining Handwritten Digit

Hayder Naser Khraibet AL-Behadili

Pages: 96-102

PDF Full Text
Abstract

Data-intensive science is a critical science paradigm that interferes with all other sciences. Data mining (DM) is a powerful and useful technology with wide potential users focusing on important meaningful patterns and discovers a new knowledge from a collected dataset. Any predictive task in DM uses some attribute to classify an unknown class. Classification algorithms are a class of prominent mathematical techniques in DM. Constructing a model is the core aspect of such algorithms. However, their performance highly depends on the algorithm behavior upon manipulating data. Focusing on binarazaition as an approach for preprocessing, this paper analysis and evaluates different classification algorithms when construct a model based on accuracy in the classification task. The Mixed National Institute of Standards and Technology (MNIST) handwritten digits dataset provided by Yann LeCun has been used in evaluation. The paper focuses on machine learning approaches for handwritten digits detection. Machine learning establishes classification methods, such as K-Nearest Neighbor(KNN), Decision Tree (DT), and Neural Networks (NN). Results showed that the knowledge-based method, i.e. NN algorithm, is more accurate in determining the digits as it reduces the error rate. The implication of this evaluation is providing essential insights for computer scientists and practitioners for choosing the suitable DM technique that fit with their data.

Article
Server Side Method to Detect and Prevent Stored XSS Attack

Iman F. Khazal, Mohammed A. Hussain

Pages: 58-65

PDF Full Text
Abstract

Cross-Site Scripting (XSS) is one of the most common and dangerous attacks. The user is the target of an XSS attack, but the attacker gains access to the user by exploiting an XSS vulnerability in a web application as Bridge. There are three types of XSS attacks: Reflected, Stored, and Dom-based. This paper focuses on the Stored-XSS attack, which is the most dangerous of the three. In Stored-XSS, the attacker injects a malicious script into the web application and saves it in the website repository. The proposed method in this paper has been suggested to detect and prevent the Stored-XSS. The prevent Stored-XSS Server (PSS) was proposed as a server to test and sanitize the input to web applications before saving it in the database. Any user input must be checked to see if it contains a malicious script, and if so, the input must be sanitized and saved in the database instead of the harmful input. The PSS is tested using a vulnerable open-source web application and succeeds in detection by determining the harmful script within the input and prevent the attack by sterilized the input with an average time of 0.3 seconds.

Article
Effect of Laser Linewidth on the Channel Spacing and Error Rate in Optical Frequency Division Multiplexed Systems Incorporating Semiconductor Optical Amplifier Demultiplexers

R. S. Fyath, Haider M. Al-Sabbagh

Pages: 93-106

PDF Full Text
Abstract

Analysis and performance predictions of optical frequency division multiplexing (OFDM) receivers incorporating semiconductor optical amplifier (SOA) demultiplexer are presented. The analysis takes into account the influence of finite laser linewidth and various noise sources associated with the optically preamplified detection system. The results indicate clearly that the normalized crosstalk level must be kept below 10.8 dB to prevent the occurrence of a bit-error-rate (BER) floor at a level greater than $10^{-9}$

Article
Using Pearson Correlation and Mutual Information (PC-MI) to Select Features for Accurate Breast Cancer Diagnosis Based on a Soft Voting Classifier

Mohammed S. Hashim, Ali A. Yassin

Pages: 43-53

PDF Full Text
Abstract

Breast cancer is one of the most critical diseases suffered by many people around the world, making it the most common medical risk they will face. This disease is considered the leading cause of death around the world, and early detection is difficult. In the field of healthcare, where early diagnosis based on machine learning (ML) helps save patients’ lives from the risks of diseases, better-performing diagnostic procedures are crucial. ML models have been used to improve the effectiveness of early diagnosis. In this paper, we proposed a new feature selection method that combines two filter methods, Pearson correlation and mutual information (PC-MI), to analyse the correlation amongst features and then select important features before passing them to a classification model. Our method is capable of early breast cancer prediction and depends on a soft voting classifier that combines a certain set of ML models (decision tree, logistic regression and support vector machine) to produce one model that carries the strengths of the models that have been combined, yielding the best prediction accuracy. Our work is evaluated by using the Wisconsin Diagnostic Breast Cancer datasets. The proposed methodology outperforms previous work, achieving 99.3% accuracy, an F1 score of 0.9922, a recall of 0.9846, a precision of 1 and an AUC of 0.9923. Furthermore, the accuracy of 10-fold cross-validation is 98.2%.

Article
A ROBUST WAVELET BASED WATERMARKING SCHEME FOR DIGITAL AUDIO

Ayad Ibrahim Abdulsada

Pages: 65-72

PDF Full Text
Abstract

In this paper, a robust wavelet based watermarking scheme has been proposed for digital audio. A single bit is embedded in the approximation part of each frame. The watermark bits are embedded in two subsets of indexes randomly generated by using two keys for security purpose. The embedding process is done in adaptively fashion according to the mean of each approximation part. The detection of watermark does not depend on the original audio. To measure the robustness of the algorithm, different signal processing operations have been applied on the watermarked audio. Several experimental results have been conducted to illustrate the robustness and efficiency of the proposed watermarked audio scheme.

Article
Grid-Forming and Grid-Following Based Microgrid Inverters Control

Ali M. Jasim, Basil H. Jasim

Pages: 111-131

PDF Full Text
Abstract

Microgrids (ℳ-grids) can be thought of as a small-scale electrical network comprised of a mix of Distributed Generation (DG) resources, storage devices, and a variety of load species. It provides communities with a stable, secure, and renewable energy supply in either off-grid (grid-forming) or on-grid (grid-following) mode. In this work, a control strategy of coordinated power management for a Low Voltage (LV) ℳ-grid with integration of solar Photovoltaic (PV), Battery Energy Storage System (BESS) and three phase loads operated autonomously or connected to the utility grid has been created and analyzed in the Matlab Simulink environment. The main goal expressed here is to achieve the following points: (i) grid following, grid forming modes, and resynchronization mode between them, (ii) Maximum Power Point Tracking (MPPT) from solar PV using fuzzy logic technique, and active power regulator based boost converter using a Proportional Integral (PI) controller is activated when a curtailment operation is required, (iii) ℳ-grid imbalance compensation (negative sequence) due to large single-phase load is activated, and (iv) detection and diagnosis the fault types using Discrete Wavelet Transform (DWT). Under the influence of irradiance fluctuation on solar plant, the proposed control technique demonstrates how the adopted system works in grid- following mode (PQ control), grid- formation, and grid resynchronization to seamlessly connect the ℳ-grid with the main distribution system. In this system, a power curtailment management system is introduced in the event of a significant reduction in load, allowing the control strategy to be switched from MPPT to PQ control, permitting the BESS to absorb excess power. Also, in grid-following mode, the BESS's imbalance compensation mechanism helps to reduce the negative sequence voltage that occurs at the Point of Common Coupling (PCC) bus as a result of an imbalance in the grid's power supply. In addition to the features described above, this system made use of DWT to detect and diagnose various fault conditions.

Article
Enhancing Reading Advancement Using Eye Gaze Tracking

Saadaldeen Ahmed, Mustafa latif fadhil, Salwa Khalid Abdulateef

Pages: 59-64

PDF Full Text
Abstract

This research aims to understand the enhancing reading advancement using eye gaze tracking in regards to pull the increase of time interacting with such devices along. In order to realize that, user should have a good understanding of the reading process and of the eye gaze tracking systems; as well as a good understanding of the issues existing while using eye gaze tracking system for reading process. Some issues are very common, so our proposed implementation algorithm compensate these issues. To obtain the best results possible, two mains algorithm have been implemented: the baseline algorithm and the algorithm to smooth the data. The tracking error rate is calculated based on changing points and missed changing points. In [21], a previous implementation on the same data was done and the final tracking error rate value was of 126%. The tracking error rate value seems to be abnormally high but this value is actually useful as described in [21]. For this system, all the algorithms used give a final tracking error rate value of 114.6%. Three main origins of the accuracy of the eye gaze reading were normal fixation, regression, skip fixation; and accuracies are displayed by the tracking rate value obtained. The three main sources of errors are the calibration drift, the quality of the setup and the physical characteristics of the eyes. For the tests, the graphical interface uses characters with an average height of 24 pixels for the text. By considering that the subject was approximately at 60 centimeters of the tracker. The character on the screen represents an angle of ±0.88◦; which is just above the threshold of ±0.5◦ imposed by the physical characteristics of the eyeball for the advancement of reading using eye gaze tracking.

Article
Detection of Covid-19 Based on Chest Medical Imaging and Artificial Intelligent Techniques: A Review

Nawres Aref, Hussain Kareem

Pages: 176-182

PDF Full Text
Abstract

Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.

Article
Securing a Web-Based Hospital Management System Using a Combination of AES and HMAC

Alaa B. Baban, Safa A. Hameed

Pages: 93-99

PDF Full Text
Abstract

The demand for a secured web storage system is increasing daily for its reliability which ensures data privacy and confidentiality. The proposed paper aims to find the most secure ways to maintain integrity and protect privacy and security in healthcare management systems. The Advanced Encryption Standard (AES) algorithm is used to encrypt data transferred by providing a means to check the integrity of information transmitted and make it more immune to cyberattack techniques, this was implemented by using Keyed-Hash Message Authentication Code (HMAC) and Secured Hash Algorithm-256 (SHA-256). The risk of exposure to attackers can be avoided by using honeypot systems combined with Intrusion detection systems (IDSs) as a firewall system is not effective against such attacks alone. The experimental results evaluate the proposed security health information management system by comparing the performance of the encryption algorithm based on encryption time, memory and CPU usage, and entropy for different plaintext lengths. In addition, it can be seen that when changing the AES key size, more memory and time are required the longer the key size is used. The 128 bits AES key is therefore advised if the system must operate in hard real-time.

Article
A Review on Voice-based Interface for Human-Robot Interaction

Ameer A. Badr, Alia K. Abdul-Hassan

Pages: 91-102

PDF Full Text
Abstract

With the recent developments of technology and the advances in artificial intelligence and machine learning techniques, it has become possible for the robot to understand and respond to voice as part of Human-Robot Interaction (HRI). The voice-based interface robot can recognize the speech information from humans so that it will be able to interact more naturally with its human counterpart in different environments. In this work, a review of the voice-based interface for HRI systems has been presented. The review focuses on voice-based perception in HRI systems from three facets, which are: feature extraction, dimensionality reduction, and semantic understanding. For feature extraction, numerous types of features have been reviewed in various domains, such as time, frequency, cepstral (i.e. implementing the inverse Fourier transform for the signal spectrum logarithm), and deep domains. For dimensionality reduction, subspace learning can be used to eliminate the redundancies of high-dimensional features by further processing extracted features to reflect their semantic information better. For semantic understanding, the aim is to infer from the extracted features the objects or human behaviors. Numerous types of semantic understanding have been reviewed, such as speech recognition, speaker recognition, speaker gender detection, speaker gender and age estimation, and speaker localization. Finally, some of the existing voice-based interface issues and recommendations for future works have been outlined.

Article
Power Transformer Protection by Using Fuzzy Logic

Ahmed Abdulkader Aziz, Abduladhem Abdulkareem Ali, Abbas H. Abbas

Pages: 1-11

PDF Full Text
Abstract

Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperated in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy-based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with MATLAB simulation software and showed a fast and accurate trip operation.

Article
IoT Based Gas Leakage Detection and Alarming System using Blynk platforms

Noor Kareem Jumaa, Younus Mohammed Abdulkhaleq, Muntadher Asaad Nadhim, Tariq Aziz Abbas

Pages: 64-70

PDF Full Text
Abstract

Gas or liquefied petroleum gas (LPG) is a chemical substance resultant from petroleum and could be dangerous in industrial places or those that deal with this substance. Gas leakage causes many health issues. So, to prevent such catastrophes and in order to maintain a clean air environment, the workspace atmosphere should be frequently monitored and controlled. The proposed monitoring gas leakage detector system is based on Internet of Things (IoT) technology. NodeMCU ESP8266 Wi-Fi is used to be the microcontroller for the whole system. The combustible gas sensor (MQ2) is used in order to detect the presence of methane (CH4) and carbon monoxide gas (CO). MQ2 sensor will detect the concentration of the gas according to the voltage output of the sensor and the ESP8266 will send the data reading from the gas sensor to Blynk IoT platform over an IOS phone; data visualization is done using Thingspeak IoT Platform. Besides, a fan will immediately work upon the leakage occurs along with an alarming buzzer.

Article
Recognition of Cardiac Arrhythmia using ECG Signals and Bio-inspired AWPSO Algorithms

Jyothirmai Digumarthi, V. M. Gayathri, R. Pitchai

Pages: 95-103

PDF Full Text
Abstract

Studies indicate cardiac arrhythmia is one of the leading causes of death in the world. The risk of a stroke may be reduced when an irregular and fast heart rate is diagnosed. Since it is non-invasive, electrocardiograms are often used to detect arrhythmias. Human data input may be error-prone and time-consuming because of these limitations. For early detection of heart rhythm problems, it is best to use deep learning models. In this paper, a hybrid bio-inspired algorithm has been proposed by combining whale optimization (WOA) with adaptive particle swarm optimization (APSO). The WOA is a recently developed meta-heuristic algorithm. APSO is used to increase convergence speed. When compared to conventional optimization methods, the two techniques work better together. MIT-BIH dataset has been utilized for training, testing and validating this model. The recall, accuracy, and specificity are used to measure efficiency of the proposed method. The efficiency of the proposed method is compared with state-of-art methods and produced 98.25 % of accuracy.

Article
Semi-Empirical Models for the Variation of Soil Complex Permittivity with Depth

Jawad K. Ali, Adil H. Ahmad

Pages: 26-32

PDF Full Text
Abstract

In this paper new semi-empirical formulas are developed to evaluate the variation of both real and imaginary parts of soil complex permittivity with depth inside the earth's surface. Computed values using these models show good agreement with published measured values for soils of the same textures and same frequency band. Use of these models may serve to handle more accurate results especially in the ground probing radar (GPR) applications and other applications relating the detection of buried objects inside the earth's surface, where the use of a single average value of the soil complex permittivity had not necessarily led, for most of the times, to accurate results for the electromagnetic fields propagated inside the earth's surface.

1 - 53 of 53 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.