Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for converters

Article
DSP-Based Control of Multi-Rail DC-DC Converter Systems with Non-Integer Switching Frequency Ratios

James Mooney, Simon Effler, Mark Halton, Abdulhussain E. Mahdi

Pages: 9-13

PDF Full Text
Abstract

This paper examines the use of non-integer switching frequency ratios in digitally controlled DC-DC converters. In particular the execution of multiple control algorithms using a Digital Signal Processor (DSP) for this application is analyzed. The variation in delay from when the Analog to Digital Converter (ADC) samples the output voltage to when the duty cycle is updated is identified as a critical factor to be considered when implementing the digital control system. Fixing the delay to its maximum value is found to produce reasonable performance using a conventional DSP. A modification of the DSP’s interrupt control logic is proposed here that minimizes the delay and thereby yields improved performance compared with that given by a standard interrupt controller. Applying this technique to a multi-rail power supply system provides the designer with the flexibility to choose arbitrary switching frequencies for individual converters, thereby allowing optimization of the efficiency and performance of the individual converters.

Article
On -Line UPS with Low Frequency Transformer for Isolation

Husham Idan Hussein

Pages: 100-106

PDF Full Text
Abstract

This paper addressed the design of online uninterruptible power supply (UPS) system with a low frequency transformer for isolation, based on given specifications which include bypass switch and battery and taken into account the concentrated on open loop operation. Depending on the application, the online UPS system is composed by two stage conversions of AC/DC and DC/AC, the enclosure of these freeloading effects of all components and devices is very important to design the UPS system for acceptable performance. The initial stage of the design is based on the theoretical calculations and few assumptions have been made throughout the design. Simulation work has been carried out by MATLAB/Simulink program to validate the operation of the online UPS system with low frequency transformer isolation. The analysis of the results are presented and the justifications with regards to performance evaluation parameters which some are not satisfied the design specifications are discussed in details.

Article
Control Strategy for a PV-BESS-SC Hybrid System in Islanded Microgrid

Ali Almousawi, Ammar A. Aldair

Pages: 1-11

PDF Full Text
Abstract

In this paper, a control strategy for a combination PV-BESS-SC hybrid system in islanded microgrid with a DC load is designed and analyzed using a new topology. Although Battery Energy Storage System (BESS) is employed to keep the DC bus voltage stable; however, it has a high energy density and a low power density. On the other hand, the Supercapacitor (SC) has a low energy density but a high-power density. As a result, combining a BESS and an SC is more efficient for power density and high energy. Integrating the many sources is more complicated. In order to integrate the SC and BESS and deliver continuous power to the load, a control strategy is required. A novel method for controlling the bus voltage and energy management will be proposed in this paper. The main advantage of the proposed system is that throughout the operation, the State of Charging (SOC), BESS current, and SC voltage and current are all kept within predetermined ranges. Additionally, SC balances fast- changing power surges, while BESS balances slow-changing power surges. Therefore, it enhances the life span and minimizes the current strains on BESS. To track the Maximum Power Point (MPP) or restrict power from the PV panel to the load, a unidirectional boost converter is utilized. Two buck converters coupled in parallel with a boost converter are proposed to charge the hybrid BESS-SC. Another two boost converters are used to manage the discharge operation of the BESS-SC storage in order to reduce losses. The simulation results show that the proposed control technique for rapid changes in load demand and PV generation is effective. In addition, the proposed technique control strategy is compared with a traditional control strategy.

Article
Feasibility Study of Off-Grid Rural Electrification in Iraq: A Case Study of the AL-Teeb Area

Husam A. Salim, Jabbar R. Rashed

Pages: 251-263

PDF Full Text
Abstract

In developing nations, such as Iraq, supplying power to isolated and rural border areas that are not connected to the grid continues to be a problem. At present, fossil fuels, which are significant causes of pollution, supply around 80% of the world’s energy demands. Nonetheless, drastically reducing reliance on fossil fuels has many reasons, including depleting global fossil fuel supplies, increasing costs and growing energy needs. The present study examines the electrical requirements of the Al-Teeb area, a city situated in the eastern region of Iraq, close to the Iranian border. This region has not been researched despite its tourism and oil significance. Despite the unpredictable expansion of many isolated locations in Iraq in recent years, the number of generation stations has not changed. Supplying energy to these places will require considerable time and money. Photovoltaics (PV), wind turbines (WTs), diesel generators (DGs), batteries and converters combined on the basis of their compatibility under three distinct scenarios comprise the system’s components. Considering the lowest net present cost (NPC) and cost of energy (COE) of all the examined scenarios, PV, WTs, batteries and DGs are the most economical solutions for the Al-Teeb area. Number of PV (1,215), number of WTs (59), number of DGs (13), number of batteries (3,138), number of converters (47), COE (0.155 US$/kWh), NPC (14.2 million US$) and initial capital cost (4.91 million US$) are revealed by the results. Finally, the results are confirmed using another global optimization method, namely, modified particle swarm optimization.

Article
Robust Control Design for Two-Wheel Self-Balanced Mobile Robot

Hasanain H. Mohsin, Ammar A. Aldair, Walid A. Al-Hussaibi

Pages: 38-46

PDF Full Text
Abstract

As a key type of mobile robot, the two-wheel mobile robot has been developed rapidly for varied domestic, health, and industrial applications due to human-like movement and balancing characteristics based on the inverted pendulum theory. This paper presents a developed Two-Wheel Self-Balanced Robot (TWSBR) model under road disturbance effects and simulated using MATLAB Simscape Multibody. The considered physical-mechanical structure of the proposed TWSBS is connected with a Simulink controller scheme by employing physical signal converters to describe the system dynamics efficiently. Through the Simscape environment, the TWSBR motion is visualized and effectively analyzed without the need for complicated analysis of the associated mathematical model. Besides, 3D visualization of real-time behavior for the implemented TWSBR plant model is displayed by Simulink Mechanics Explorer. Robot balancing and stability are achieved by utilizing Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR) controllers' approaches considering specific control targets. A comparative study and evaluation of both controllers are conducted to verify the robustness and road disturbance rejection. The realized performance and robustness of developed controllers are observed by varying object-carrying loaded up on mechanical structure layers during robot motion. In particular, the objective weight is loaded on the robot layers (top, middle, and bottom) during disturbance situations. The achieved findings may have the potential to extend the deployment of using TWSBRs in the varied important application.

Article
A Novel Topology of Zero-Current Transition (ZCT) Voltage-Source PWM three-phase Inverter

Dr.Mustafa M. Ibrahim, Basim Talib Kadhim

Pages: 59-75

PDF Full Text
Abstract

Soft-switching technique can substantially improve the performance of power converters, mainly due to the increase of switching frequency, that result in better modulation quality. This is more concerned particularly in the high power applications, where devices [gate turn off (GTO) or something else similar) can not operate over a few hundreds of hertz in conventional hard switching converter structures. In this paper, design and analysis of moderate power ZCT three-phase PWM inverter has been presented. Also, the designed inverter and its novel control circuit is implemented experimentally to investigate its characteristics with this new zero-current transition ZCT technique.

Article
Design and Analysis of DC/DC ZCT Boost Converter with Moderate Output Power

Mustafa M. Ibrahim, Khalid M. Abdul-Hassun

Pages: 43-58

PDF Full Text
Abstract

Soft commutation techniques have been of great interest during the last few years in power supply switching applications. The recently developed Zero-Voltage transition (ZVT) and Zero-Current transition (ZCT) pulse width modulation (PWM) technique incorporated soft-switching function into PWM converters, so that the switching losses can be reduced with minimum voltage/current stresses and circulating energy. The ZCT technique can significantly reduce the switch turn-off loss which is usually the dominant switching loss in high-power applications. In this paper the steady state analysis and design of the ZCT PWM boost converter are introduced. Control and drive circuit have been designed to drive a 100 Watt ZCT PWM boost converter to experimentally investigate its features and characteristics.

Article
Building A Control Unit of A Series-Parallel Hybrid Electric Vehicle by Using A Nonlinear Model Predictive Control (NMPC) Strategy

Maher Al-Flehawee, Auday Al-Mayyahi

Pages: 93-102

PDF Full Text
Abstract

Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management optimization problem, which consists of the cost function and its constraints. The cost function describes the required control objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's energy converters, which are represented by the torque of the vehicle components.

Article
Adaptive Energy Management System for Smart Hybrid Microgrids

Bilal Naji Alhasnawi, Basil H. Jasim

Pages: 73-85

PDF Full Text
Abstract

The energy management will play an important role in the future smart grid by managing loads in an intelligent way. Energy management programs, realized via House Energy Management systems (HEMS) for smart cities, provide many benefits; consumers enjoy electricity price savings, and utility operates at reduced peak demand. This paper proposed an adaptive energy management system for islanded mode and grid-connected mode. In this paper, a hybrid system that includes distribution electric grid, photovoltaics, and batteries are employed as energy sources in the residential of the consumer in order to meet the demand. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. This paper uses home energy management system which switches between the distributed energy and the grid power sources. The home energy management system incorporates controllers for maximum power point tracking, battery charge and discharge and inverter for effective control between different sources depending upon load requirement and availability of sources at maximum powerpoint. Also, in this paper, the Maximum Power Point Tracking (MPPT) technique is applied to the photovoltaic station to extract the maximum power from hybrid power system during variation of the environmental conditions. The operation strategy of energy storage systems is proposed to solve the power changes from photovoltaics and houses loads fluctuations locally, instead of reflecting those disturbances to the utility grid. Furthermore, the energy storage systems energy management scheme will help to achieve the peak reduction of the houses daily electrical load demand. The simulation results have verified the effectiveness and feasibility of the introduced strategy and the capability of the proposed controller for a hybrid microgrid operating in different modes.

Article
A New Coordinated Control of Hybrid Microgrids with Renewable Energy Resources Under Variable Loads and Generation Conditions

Bilal Naji Alhasnawi, Basil H. Jasim

Pages: 1-20

PDF Full Text
Abstract

The hybrid AC/DC microgrid is considered to be more and more popular in power systems as increasing loads. In this study, it is presented that the hybrid AC/DC microgrid is modeled with some renewable energy sources (e.g. solar energy, wind energy) in the residential of the consumer in order to meet the demand. The power generation and consumption are undergoing a major transformation. One of the tendencies is to integrate microgrids into the distribution network with high penetration of renewable energy resources. In this paper, a new distributed coordinated control is proposed for hybrid microgrid, which could apply to both grid-connected mode and islanded mode with hybrid energy resources and variable loads. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. Also, the maximum power point tracking technique is applied to both photovoltaic stations and wind turbines to extract the maximum power from the hybrid power system during the variation of the environmental conditions. Finally, a simulation model is built with a photovoltaic, wind turbine, hybrid microgrid as the paradigm, which can be applied to different scenarios, such as small-sized commercial and residential buildings. The simulation results have verified the effectiveness and feasibility of the introduced strategy for a hybrid microgrid operating in different modes

1 - 10 of 10 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.