This paper presents a comprehensive analysis of a new direct detection polarization shift keying (DD POLSK) receiver structure that is based on Jones matrix technique. The bit - error rate (BER) characteristics of the receiver is examined under system impairments and the results are compared with those related to other DD POLSK receivers reported in the literature. The results indicate that Jones matrix receiver is less sensitive to optical amplifier gain variation when compared with other receivers.
Analysis and performance predictions of optical frequency division multiplexing (OFDM) receivers incorporating semiconductor optical amplifier (SOA) demultiplexer are presented. The analysis takes into account the influence of finite laser linewidth and various noise sources associated with the optically preamplified detection system. The results indicate clearly that the normalized crosstalk level must be kept below 10.8 dB to prevent the occurrence of a bit-error-rate (BER) floor at a level greater than $10^{-9}$
In this paper, we evaluate the performance of UMTS (Universal Mobile Telecommunication System) downlink system in vicinity of UWB system. The study is achieved via simulating a scenario of a building which is located within UMTS cell borders and utilizes from both UMTS and UWB appliances. The simulation results show that the UMTS system is considerably affected by the UWB interference. However, in order to battle this interference and achieve reasonable BER (Bit Error Rate) of 10 -4 , we found that it is very necessary to carefully raise the UMTS base station transmitted power against that of UWB interferer. So, the minimum requirements for UMTS system to overcome UWB interference are stated in this work.
Non-ideal channel conditions degrade the performance of wireless networks due to the occurrence of frame errors. Most of the well-known works compute the saturation throughput and packet delay for the IEEE 802.11 Distributed Coordination Function (DCF) protocol with the assumption that transmission is carried out via an ideal channel (i.e., no channel bit errors or hidden stations), and/or the errors exist only in data packets. Besides, there are no considerations for transmission errors in the control frames (i.e., Request to Send (RTS), Clear to Send (CTS), and Acknowledgement (ACK)). Considering the transmission errors in the control frames adds complexity to the existing analysis for the wireless networks. In this paper, an analytical model to evaluate the Medium Access Control (MAC) layer saturation throughput and packet delay of the IEEE 802.11g and IEEE 802.11n protocols in the presence of both collisions and transmission errors in a non-ideal wireless channel is provided. The derived analytical expressions reveal that the saturation throughput and packet delay are affected by the network size (n), packet size, minimum backoff window size (W min ), maximum backoff stage (m), and bit error rate (BER). These results are important for protocol optimization and network planning in wireless networks .
This article presents a developed intensity modulation/direct detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM). More precisely, the presented C-O-OFDM is based on the C-transform as a unitary orthogonal transform instead of the state-of-the-art discrete Fourier transform (DFT). Due to the properties of the real C-transform, Hermitian symmetry (HS) is not required to produce real OFDM samples. Therefore, the proposed scheme supports twice the input symbols compared to conventional DFT-based OFDM system. Real data mapping and DC bias technology is considered to evaluate the performance of the presented scheme over optical wireless multipath. The simulation results shows that the proposed C-O-OFDM is more resilience to multipath phenomena than the competitive DFT-O-OFDM and DHT-O-OFDM schemes for similar bit rate. The proposed scheme achieves about 22 dB signal-to-noise ratio (SNR) gain in comparison with the DFT-O-OFDM and about 2.5dB SNR gain in comparison with the DHT-O-OFDM scheme.
Recently, Jones matrix parameter shift keying (JMPSK) technique has been proposed in the literature to achieve phase noise and polarization state insensitive optical communication systems. The aim of this paper is to examine the performance of this system in the presence of system impairments, namely channel dichroism. A comprehensive analysis is presented to assess the effect of dichroism on the bit-error-rate (BER) characteristics of JMPSK receiver.
This paper presents an insufficient cyclic prefix (CP) Orthogonal Frequency Division Multiplexing (OFDM) system with equalizer whose coefficients are calculated using Least Mean Square (LMS) algorithm. The OFDM signal is passed through a channel with four multipath signals which cause the OFDM signal to be under high inter-symbol interference (ISI) and inter-carrier interference (ICI).8-QAM and 16-QAM digital modulation techniques are used to evaluate the performance of the proposed system. The simulation results have accentuated the high performance of the LMS equalizer via comparing its Bit Error Rate (BER) and constellation diagram with those of the Minimum Mean Square Error and Zero Forcing equalizers. Moreover, the results also reveal that the LMS equalizer provides BER performance close to that of the OFDM system with a hypothetical sufficient CP.
In this paper, we evaluate the performance of WiMAX downlink system in vicinity of UWB system. The study is achieved via simulating a scenario of an office building which utilizes from both WiMAX and UWB appliances. From the simulation results, we found that WiMAX system is largely affected by the UWB interference. However, in order to overcome the interference problem and achieve reasonable BER (Bit Error Rate) of 10 -4 , we found that it is very necessary to raise the WiMAX transmitted power in relative to that of UWB interferer. So, the minimum requirements for WiMAX system to overcome UWB interference are stated here in this work.
Beam squint phenomenon is considered one of the most drawbacks that limit the use of (mm-waves) array antennas; which causes significant degradation in the BER of the system. In this paper, a uniform linear array (ULA) system is exemplified at millimeter (mm-waves) frequency bands to realize the effects of beam squint phenomena from different directions on an equivalent gain response to represent the channel performance in terms of bit error rate (BER). A simple QPSK passband signal model is developed and tested according to the proposed antenna array with beam squint. The computed results show that increasing the passband bandwidth and the number of antenna elements, have a significant degradation in BER at the receiver when the magnitude and phase errors caused by the beam squint at 26 GHz with various spectrum bandwidths.
In this study, a distributed power control algorithm is proposed for Dynamic Frequency Hopping Optical-CDMA (DFH-OCDMA) system. In general, the DFH-OCDMA can support higher number of simultaneous users compared to other OCDMA techniques. However, the performance of such system degrades significantly as the received power does lower than its minimum threshold. This may obviously occur in a DFH-OCDMA network with near-far problem which consist of different fiber lengths among the users, that resulting to unequal power attenuation. The power misdistribution among simultaneous active users at the star coupler would degrade the Bit Error Rate (BER) performance for users whose transmitting signals with longer fiber lengths. In order to solve these problems, we propose an adaptive distributed power control technique for DFH-OCDMA to satisfy the target Signal to Noise Ratio (S to R) for all users. Taking into account the noise effects of Multiple Access Interference (MAI), Phase Induced Intensity oise (PII) and shot noise, the system can support 100% of users with power control as compared to 33% without power control when the initial transmitted power was -1dBm with 30 simultaneous users.