Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for aodv

Article
Improvement of AODV Routing on MANETS Using Fuzzy Systems

Taqwa Odey Fahad, Prof. Abduladhim A. Ali

Pages: 102-106

PDF Full Text
Abstract

Most of routing protocols used for Mobile Ad hoc Network (MANET), such as Ad hoc on demand distance vector (AODV) routing, uses minimum hops as the only metric for choosing a route. This decision might lead to cause some nodes become congested which will degrade the network performance. This paper proposes an improvement of AODV routing algorithm by making routing decisions depend on fuzzy cost based on the delay in conjunction with number of hops in each path. Our simulation was carried out using OMNET++ 4.0 simulator and the evaluation results show that the proposed Fuzzy Multi-Constraint AODV routing performs better than the original AODV in terms of average end-to-end delay and packet delivery.

Article
A Simulation of AODV and GPSR Routing Protocols in VANET Based on Multimetrices

Israa A. Aljabry, Ghaida A. Al-Suhail

Pages: 66-72

PDF Full Text
Abstract

Vehicular Ad hoc Networks (VANETs), a subsection of Mobile Ad hoc Networks (MANETs), have strong future application prospects. Because topology structures are rapidly changing, determining a route that can guarantee a good Quality of Service (QoS) is a critical issue in VANETs. Routing is a critical component that must be addressed in order to utilize effective communication among vehicles. The purpose obtained from this study is to compare the AODV and GPSR performance in terms of Packet Delivery Ratio, Packet Drop Ratio, Throughput, and End-to-End Delay by applying three scenarios, the first scenario focuses on studying these protocols in terms of QoS while changing the number of vehicles at a constant speed of 40Km/h, and for the second scenario changing the speed value while keeping a constant number of vehicles which is 100, the third involves changing the communication range at a constant speed and vehicle number. This study represents a foundation for researchers to help elaborate on the strength and weaknesses of these two protocols. OMNeT++ in conjunction with SUMO is used for simulation.

Article
Design, Simulation, and Performance Evaluation of Reactive and Proactive Ad-Hoc Routing Protocols

Salah Abdulghani Alabady, Abdulhameed Nabeel Hameed

Pages: 1-15

PDF Full Text
Abstract

The primary goal of this study is to investigate and evaluate the performance of wireless Ad-Hoc routing protocols using the OPNET simulation tool, as well as to recommend the most effective routing strategies for the wireless mesh environment. Investigations have been testified to analyze the performance of the reactive and proactive Ad-Hoc routing protocols in different scenarios. Application and wireless metrics were configured that were used to test and evaluate the performance of routing protocols. The application metric includes web browsing metrics such as HTTP page response time, voice and video metrics such as end-to-end delay, and delay variation. The wireless network metrics include wireless media access delay, data dropped, wireless load, wireless retransmission attempts, and Packet Delivery Ratio. The simulations results show that the AODV overcome DSR and OLSR in terms of PDR (76%), wireless load (22.692 Mbps), voice delay variation (102.685 ms), HTTP page response time (15.317 sec), voice and video packet end-to-end delay (206.527 and 25.294 ms), wireless media access delay (90.150 ms), data dropped (10.003 Mbps), wireless load (22.692 Mbps), and wireless retransmission attempts (0.392 packets).

Article
Enhancing Packet Reliability in Wireless Multimedia Sensor Networks using a Proposed Distributed Dynamic Cooperative Protocol (DDCP) Routing Algorithm

Hanadi Al-Jabry, Hamid Ali Abed Al-Asadi

Pages: 158-168

PDF Full Text
Abstract

Wireless Multimedia Sensor Networks (WMSNs) are being extensively utilized in critical applications such as envi- ronmental monitoring, surveillance, and healthcare, where the reliable transmission of packets is indispensable for seamless network operation. To address this requirement, this work presents a pioneering Distributed Dynamic Coop- eration Protocol (DDCP) routing algorithm. The DDCP algorithm aims to enhance packet reliability in WMSNs by prioritizing reliable packet delivery, improving packet delivery rates, minimizing end-to-end delay, and optimizing energy consumption. To evaluate its performance, the proposed algorithm is compared against traditional routing protocols like Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR), as well as proactive routing protocols such as Optimized Link State Routing (OLSR). By dynamically adjusting the transmission range and selecting optimal paths through cooperative interactions with neighboring nodes, the DDCP algorithm offers effective solutions. Extensive simulations and experiments conducted on a wireless multimedia sensor node testbed demonstrate the superior performance of the DDCP routing algorithm compared to AODV, DSR, and OLSR, in terms of packet delivery rate, end-to-end delay, and energy efficiency. The comprehensive evaluation of the DDCP algorithm against multiple routing protocols provides valuable insights into its effectiveness and efficiency in improving packet reliability within WMSNs. Furthermore, the scalability and applicability of the proposed DDCP algorithm for large-scale wireless multimedia sensor networks are confirmed. In summary, the DDCP algorithm exhibits significant potential to enhance the performance of WMSNs, making it a suitable choice for a wide range of applications that demand robust and reliable data transmission.

1 - 4 of 4 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.