An extensive analysis on reducing the turn-on time delay (t on ) in vertical cavity surface emitting lasers (VCSELs) has conducted successfully by considering all the recombination rate coefficients R(N) Besides the R(N) coefficients, the impact of other laser parameters such as, injection current (I inj ), laser cavity volume (V),mirror reflectivity (R), and operating temperature (T) also have investigated. Unlike pervious studies, the temperature dependence (TD) of t on is calculated according to TD of laser parameters instead of well-known Pankove relationship. Results showed that, t on can be reduced by increasing the I inj and/or the N i . Meanwhile, the t on increases by increasing the R(N) coefficients. Also, results showed that the t on can be reduced by increasing the R-level or by optimizing laser cavity volume.
In this paper, an analysis of performance acceleration of an external laser source (ELS) model based polymer fiber gratings (PFGs) by reducing the turn-on delay time (TDelay) is successfully investigated numerically by optimizing model parameters. In contrast to all previous studies that relied either on approximate or experimental equations, the analysis was based on an exact numerical formula. The analysis is based on the investigation of the effect of diode injected current (Iin j), temperature (T), recombination rate coefficients (i.e. Anr, B, and C), and optical feedback (OFB) level. Results have demonstrated that by optimizing model parameters the Delay can be controlled and reduced effectively.