Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Fatemah K. AL-Assfor

Article
Design Efficient Vedic-Multiplier for Floating-Point MAC Module

Fatima Tariq Hussein, Fatemah K. AL-Assfor

Pages: 182-189

PDF Full Text
Abstract

Multiplication-accumulation (MAC) operation plays a crucial role in digital signal processing (DSP) applications, such as image convolution and filters, especially when performed on floating-point numbers to achieve high-level of accuracy. The performance of MAC module highly relies upon the performance of the multiplier utilized. This work offers a distinctive and efficient floating-point Vedic multiplier (VM) called adjusted-VM (AVM) to be utilized in MAC module to meet modern DSP demands. The proposed AVM is based on Urdhva-Tiryakbhyam-Sutra (UT-Sutra) approach and utilizes an enhanced design for the Brent-Kung carry-select adder (EBK-CSLA) to generate the final product. A (6*6)-bit AVM is designed first, then, it is extended to design (12*12)-bit AVM which in turns, utilized to design (24*24)-bit AVM. Moreover, the pipelining concept is used to optimize the speed of the offered (24*24)-bit AVM design. The proposed (24*24)-bit AVM can be used to achieve efficient multiplication for mantissa part in binary single-precision (BSP) floating-point MAC module. The proposed AVM architectures are modeled in VHDL, simulated, and synthesized by Xilinx-ISE14.7 tool using several FPGA families. The implementation results demonstrated a noticeable reduction in delay and area occupation by 33.16% and 42.42%, respectively compared with the most recent existing unpipelined design, and a reduction in delay of 44.78% compared with the existing pipelined design.

Article
An Efficient Mathematical Approach for an Indoor Robot Localization System

Israa Sabri A. AL-Forati, Abdulmuttalib Rashid, Fatemah Al-Assfor

Pages: 61-70

PDF Full Text
Abstract

In a counterfeit clever control procedure, another productive methodology for an indoor robot localization framework is arranged. In this paper, a new mathematic calculation for the robot confinement framework utilizing light sensors is proposed. This procedure takes care of the issue of localization (position recognizing) when utilizing a grid of LEDs distributed uniformly in the environment, and a multi- portable robot outfitted with a multi-LDRs sensor and just two of them activate the visibility robot. The proposed method is utilized to assess the robot's situation by drawing two virtual circles for each two LDR sensors; one of them is valid and the other is disregarded according to several suggested equations. The midpoint of this circle is assumed to be the robot focus. The new framework is simulated on a domain with (n*n) LEDs exhibit. The simulation impact of this framework shows great execution in the localization procedure.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.