Page 208 - 2024-Vol20-Issue2
P. 208
204 | Al-mtory, Alnahwi & Ali
TABLE VIII.
THE TRANSIENT PARAMETER WHEN WITHOUT PID CONTROLLER AND WITH PID CONTROLLER AFTER OPTIMIZED
THE PROPORTIONAL COEFFICIENT, INTEGRAL COEFFICIENT, AND DERIVATIVE COEFFICIENT
#System System-A System-B System-C System-D System-E
tr without PID with PID without PID with PID without PID with PID without PID with PID without PID with PID
ts
MP 0.3505 0.0099 0.1877 0.0129 2.1694 0.2339 7.3892 1.5683 0.8843 0.403
15.1287 0.0175 24.5412 0.0229 33.5405 0.7756 14.1136 2.7102 1.5894 0.628
77.9429 0.005 377.305 0 7.1052 0 0 1.80E-04 00
Variables TABLE IX. CDOA
X1 Compassion between the result of different algorithms for cantilever beam problem 6.0265
X2 4.8966
X3 PSO GA WWO MVO SCA WOA 4.5686
X4 6.05099 6.03277 5.99823 6.05099 5.67787 5.78636 3.5013
X5 4.93196 5.31962 5.24612 4.93196 5.33850 5.57995 2.0950
F(x) 5.2118 4.48431 4.49356 5.21118 4.86170 4.28758 1.31251
3.94183 3.48147 3.60865 3.94183 3.45494 3.74891
1.88577 2.15591 2.13733 1.88577 2.30102 2.16705
1.37063 1.33655 1.33702 1.37063 1.34650 1.34251
REFERENCES [7] M. Azizi, S. Talatahari, N. Khodadadi, and P. Sareh,
“Multiobjective atomic orbital search (moaos) for global
[1] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fis- and engineering design optimization,” IEEE Access,
ter, “A brief review of nature-inspired algorithms for vol. 10, pp. 67727–67746, 2022.
optimization,” arXiv preprint arXiv:1307.4186, 2013.
[8] Z. Zandi, E. Afjei, and M. Sedighizadeh, “Reactive
[2] C. Blum, “Ant colony optimization: Introduction and power dispatch using big bang-big crunch optimization
recent trends,” Physics of Life reviews, vol. 2, no. 4, algorithm for voltage stability enhancement,” in 2012
pp. 353–373, 2005. IEEE International Conference on Power and Energy
(PECon), pp. 239–244, IEEE, 2012.
[3] X.-S. Yang, “Firefly algorithm, stochastic test functions
and design optimisation,” International journal of bio- [9] R. Formato, “Central force optimization: a new meta-
inspired computation, vol. 2, no. 2, pp. 78–84, 2010. heuristic with applications in applied electromagnetics,”
Progress in electromagnetics research, vol. 77, pp. 425–
[4] J. Kennedy and R. Eberhart, “Particle swarm optimiza- 491, 2007.
tion,” in Proceedings of ICNN’95-international confer-
ence on neural networks, vol. 4, pp. 1942–1948, ieee, [10] G. Zhao, X. Wang, H. Zhao, and Z. Jiang, “An im-
1995. proved pedestrian dead reckoning algorithm based on
smartphone built-in mems sensors,” AEU-International
[5] X.-S. Yang and S. Deb, “Engineering optimisation by Journal of Electronics and Communications, vol. 168,
cuckoo search,” International Journal of Mathematical p. 154674, 2023.
Modelling and Numerical Optimisation, vol. 1, no. 4,
pp. 330–343, 2010. [11] R. S. Ali, F. M. Alnahwi, and A. S. Abdullah, “A modi-
fied camel travelling behaviour algorithm for engineer-
[6] C. Zhao and Y. Zhou, “A complex encoding flower polli- ing applications,” Australian Journal of Electrical and
nation algorithm for global numerical optimization,” in Electronics Engineering, vol. 16, no. 3, pp. 176–186,
Intelligent Computing Theories and Application: 12th 2019.
International Conference, ICIC 2016, Lanzhou, China,
August 2-5, 2016, Proceedings, Part I 12, pp. 667–678, [12] T.-C. Chen, P.-W. Tsai, S.-C. Chu, and J.-S. Pan, “A
Springer, 2016. novel optimization approach: bacterial-ga foraging,” in