Page 168 - 2024-Vol20-Issue2
P. 168

164 |                                                             Murad & Alasadi

      computer vision: History, architecture, application, chal-  [74] S. e. a. Escalera, “Chalearn multi-modal gesture recog-
      lenges, and future scope,” Electronics, vol. 10, no. 20,          nition 2013: grand challenge and workshop summary,”
      2021.                                                             in Proceedings of the 15th ACM on International con-
                                                                        ference on multimodal interaction, pp. 365–368, dec
[63] M. A. Khan, M. Mittal, L. M. Goyal, and S. Roy, “A deep            2013.
      survey on supervised learning based human detection
      and activity classification methods,” Multimedia Tools      [75] P. e. a. Molchanov, “Online detection and classification
      and Applications, vol. 80, pp. 27867–27923, jul 2021.             of dynamic hand gestures with recurrent 3d convolu-
                                                                        tional neural network,” in Proceedings of the IEEE Con-
[64] W. Chen, Q. Sun, X. Chen, G. Xie, H. Wu, and C. Xu,                ference on Computer Vision and Pattern Recognition,
      “Deep learning methods for heart sound classification: A          pp. 4207–4215, 2016.
      systematic review,” Entropy, vol. 23, no. 6, 2021.
                                                                  [76] V. e. a. Athitsos, “The american sign language lexicon
[65] B. Xie, H. Liu, R. Alghofaili, Y. Zhang, Y. Jiang,                 video dataset,” in 2008 IEEE Computer Society Con-
      F. D. Lobo, C. Li, W. Li, H. Huang, M. Akdere, and                ference on Computer Vision and Pattern Recognition
      C. Mousas, “A review of virtual reality skill training            Workshops, pp. 1–8, IEEE, jun 2008.
      applications,” Frontiers in Virtual Reality, vol. 2, apr
      2021.                                                       [77] S. e. a. Yuan, “Bighand2.2m benchmark: Hand pose
                                                                        dataset and state-of-the-art analysis,” in Proceedings of
[66] C. Lewis and F. C. Harris Jr, “An overview of virtual              the IEEE Conference on Computer Vision and Pattern
      reality,” in Proceedings of 31st International Conference,        Recognition, pp. 4866–4874, 2017.
      vol. 88, pp. 71–81, nov 2022.
                                                                  [78] E. P. Costa, A. C. Lorena, A. C. Carvalho, and A. A.
[67] A. Rizzo, S. Koenig, and B. Lange, “Clinical virtual               Freitas, “A review of performance evaluation measures
      reality: The state of the science,” in APA Handbook of            for hierarchical classifiers,” in Evaluation methods for
      neuropsychology, Volume 2: Neuroscience and neuro                 machine learning II: papers from the AAAI-2007 Work-
      methods, vol. 2, pp. 473–491, 2023.                               shop, vol. AAAI Technical Report WS-07-05, pp. 1–6,
                                                                        2007.
[68] N. B. Ibrahim, H. H. Zayed, and M. M. Selim, “Ad-
      vances, challenges, and opportunities in continuous sign
      language recognition,” Journal of Engineering and Ap-
      plied Sciences, vol. 15, no. 5, pp. 1205–1227, 2020.

[69] J. Wachs, H. Stern, Y. Edan, M. Gillam, C. Feied,
      M. Smith, and J. Handler, “A hand gesture sterile tool for
      browsing mri images in the or,” Journal of the American
      Medical Informatics Association, vol. 15, pp. 321–323,
      may 2008.

[70] Z. Hosseinaee, M. Le, K. Bell, and P. H. Reza, “To-
      wards non-contact photoacoustic imaging,” Photoacous-
      tics, vol. 20, dec 2020.

[71] Y. Zhang, S. Q. Xie, H. Wang, and Z. Zhang, “Data
      analytics in steady-state visual evoked potential-based
      brain-computer interface: A review,” IEEE Sensors Jour-
      nal, vol. 21, pp. 1124–1138, aug 2020.

[72] M. B. Shaikh and D. Chai, “Rgb-d data-based action
      recognition: A review,” Sensors, vol. 21, jun 2021.

[73] J. Wan, Y. Zhao, S. Zhou, I. Guyon, S. Escalera, and
      S. Z. Li, “Chalearn looking at people rgb-d isolated and
      continuous datasets for gesture recognition,” in Proceed-
      ings of the IEEE Conference on computer vision and
      pattern recognition workshops, pp. 56–64, 2016.
   163   164   165   166   167   168   169   170   171   172   173