Page 167 - 2024-Vol20-Issue2
P. 167

163 |                                                            Murad & Alasadi

[40] B. Noh, H. Park, S. Lee, and S. H. Nam, “Vision-based       [52] M. H. Ismail, S. A. Dawwd, and F. H. Ali, “Dynamic
      pedestrian’s crossing risky behavior extraction and anal-        hand gesture recognition of arabic sign language using
      ysis for intelligent mobility safety system,” Sensors,           deep convolutional neural networks,” Indones. J. Electr.
      vol. 22, no. 9, 2022.                                            Eng. Comput. Sci., vol. 25, pp. 952–962, 2022.

[41] M. K. Hu, “Visual pattern recognition by moment invari-     [53] N. Rajawat, N. Gupta, and S. Lalwani, “A comprehen-
      ants,” IRE Transactions on Information Theory, vol. 8,           sive review of hidden markov model applications in pre-
      no. 2, pp. 179–187, 1962.                                        dicting human mobility patterns,” International Journal
                                                                       of Swarm Intelligence, vol. 6, no. 1, pp. 24–47, 2021.
[42] S. Katoch, V. Singh, and U. S. Tiwary, “Indian sign
      language recognition system using surf with svm and        [54] D. Sarma and M. K. Bhuyan, “Methods, databases and
      cnn,” Array, vol. 14, 2022.                                      recent advancement of vision-based hand gesture recog-
                                                                       nition for hci systems: A review,” SN Computer Science,
[43] Z. Ren, F. Fang, N. Yan, and Y. Wu, “State of the art in          vol. 2, no. 6, 2021.
      defect detection based on machine vision,” International
      Journal of Precision Engineering and Manufacturing-        [55] S. Mandal, Z. Li, T. Chatterjee, K. Khanna, K. Montoya,
      Green Technology, vol. 9, no. 2, pp. 661–691, 2022.              L. Dai, C. Petersen, L. Li, M. Tewari, A. Johnson-Buck,
                                                                       and N. G. Walter, “Direct kinetic fingerprinting for high-
[44] N. Mirehi, M. Tahmasbi, and A. T. Targhi, “Hand ges-              accuracy single-molecule counting of diverse disease
      ture recognition using topological features,” Multimedia         biomarkers,” Accounts of Chemical Research, vol. 54,
      Tools and Applications, vol. 78, pp. 13361–13386, 2019.          no. 2, pp. 388–402, 2020.

[45] M. Wagh and P. K. Nanda, “Decision-theoretic rough          [56] J. Arora, K. Khatter, and M. Tushir, “Fuzzy c-means
      sets based automated scheme for object and background            clustering strategies: A review of distance measures,”
      classification in unevenly illuminated images,” Applied          in Software Engineering: Proceedings of CSI 2015,
      Soft Computing, vol. 119, 2022.                                  pp. 153–162, 2019.

[46] W. Chen, C. Yu, C. Tu, Z. Lyu, J. Tang, S. Ou, Y. Fu,       [57] R. S. Gaikwad and L. S. Admuthe, “A review of vari-
      and Z. Xue, “A survey on hand pose estimation with               ous sign language recognition techniques,” in Modeling,
      wearable sensors and computer-vision-based methods,”             Simulation, and Optimization: Proceedings of CoMSO
      Sensors, vol. 20, no. 4, p. 1074, 2020.                          2021, pp. 111–126, jun 2022.

[47] J. Qi, K. Xu, and X. Ding, “Approach to hand posture        [58] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief
      recognition based on hand shape features for a human-            review of the nearest neighbor algorithm for learning
      robot interaction,” Complex & Intelligent Systems, 2021.         and classification,” in 2019 International Conference
                                                                       on Intelligent Computing and Control Systems (ICCS),
[48] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsu-                    pp. 1255–1260, IEEE, may 2019.
      laiman, M. A. Bencherif, and M. A. Mekhtiche, “Hand
      gesture recognition for sign language using 3dcnn,”        [59] S. Ghosh, A. Dasgupta, and A. Swetapadma, “A study
      IEEE Access, vol. 8, pp. 79491–79509, 2020.                      on support vector machine-based linear and non-linear
                                                                       pattern classification,” in 2019 International Conference
[49] A. Thakur and A. Konde, “Fundamentals of neural net-              on Intelligent Sustainable Systems (ICISS), pp. 24–28,
      works,” International Journal for Research in Applied            IEEE, feb 2019.
      Science and Engineering Technology, vol. 9, pp. 407–
      426, 2021.                                                 [60] M. Yu, J. Jia, C. Xue, G. Yan, Y. Guo, and Y. Liu, “A
                                                                       review of sign language recognition research,” Journal
[50] T. H. Maung, “Real-time hand tracking and gesture                 of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 3879–
      recognition system using neural networks,” Interna-              3898, 2022.
      tional Journal of Computer and Information Engineer-
      ing, vol. 3, no. 2, pp. 315–319, 2009.                     [61] U. Moser and D. Schramm, “Multivariate dynamic time
                                                                       warping in automotive applications: A review,” Intelli-
[51] E. Stergiopoulou and N. Papamarkos, “Hand gesture                 gent Data Analysis, vol. 23, no. 3, pp. 535–553, 2019.
      recognition using a neural network shape fitting tech-
      nique,” Engineering Applications of Artificial Intelli-    [62] D. Bhatt, C. Patel, H. Talsania, J. Patel, R. Vaghela,
      gence, vol. 22, no. 8, pp. 1141–1158, 2009.                      S. Pandya, K. Modi, and H. Ghayvat, “Cnn variants for
   162   163   164   165   166   167   168   169   170   171   172