Page 93 - 2023-Vol19-Issue2
P. 93

89 |                                                                 Swide & Marhoon

[19] J. Y. Kim and S. B. Cho, “Electric energy consump-
      tion prediction by deep learning with state explainable
      autoencoder,” Energies, vol. 12, no. 4, 2019.

[20] M. Polson and V. Sokolov, “Deep learning for energy
      markets,” Appl. Stoch. Model. Bus. Ind., vol. 36, no. 1,
      pp. 195–209, 2020.

[21] C. J. Huang, Y. Shen, Y. H. Chen, and H. C. Chen, “A
      novel hybrid deep neural network model for short-term
      electricity price forecasting,” Int. J. Energy Res., vol. 45,
      no. 2, pp. 2511–2532, 2021.

[22] S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, and L. De-
      lahoche, “Predicting energy consumption using lstm,
      multi-layer gru and drop-gru neural networks,” Sensors,
      vol. 22, no. 11, pp. 1–20, 2022.

[23] R. Banik, P. Das, S. Ray, and A. Biswas, “Prediction of
      electrical energy consumption based on machine learn-
      ing technique,” Electr. Eng, vol. 103, no. 2, pp. 909–920,
      2022.
   88   89   90   91   92   93   94   95   96   97   98