Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for wavelet

Article
Region-Based Fractional Wavelet Transform Using Post Processing Artifact Reduction

Jassim M. Abdul-Jabbar, Alyaa Q. Ahmed Taqi

Pages: 45-53

PDF Full Text
Abstract

Wavelet-based algorithms are increasingly used in the source coding of remote sensing, satellite and other geospatial imagery. At the same time, wavelet-based coding applications are also increased in robust communication and network transmission of images. Although wireless multimedia sensors are widely used to deliver multimedia content due to the availability of inexpensive CMOS cameras, their computational and memory resources are still typically very limited. It is known that allowing a low-cost camera sensor node with limited RAM size to perform a multi-level wavelet transform, will in return limit the size of the acquired image. Recently, fractional wavelet filter technique became an interesting solution to reduce communication energy and wireless bandwidth, for resource-constrained devices (e.g. digital cameras). The reduction in the required memory in these fractional wavelet transforms is achieved at the expense of the image quality. In this paper, an adaptive fractional artifacts reduction approach is proposed for efficient filtering operations according to the desired compromise between the effectiveness of artifact reduction and algorithm simplicity using some local image features to reduce boundaries artifacts caused by fractional wavelet. Applying such technique on different types of images with different sizes using CDF 9/7 wavelet filters results in a good performance.

Article
A Multiplier-less Implementation of Two-Dimensional Circular-Support Wavelet Transform on FPGA

Jassim M. Abdul-Jabbar, Zahraa Talal Abede, Akram A. Dawood

Pages: 16-28

PDF Full Text
Abstract

In this paper, a two-dimensional (2-D) circular-support wavelet transform (2-D CSWT) is presented. 2-D CSWT is a new geometrical image transform, which can efficiently represent images using 2-D circular spectral split schemes (circularly- decomposed frequency subspaces). 2-D all-pass functions and lattice structure are used to produce 1-level circular symmetric 2-D discrete wavelet transform with approximate linear phase 2-D filters. The classical one-dimensional (1-D) analysis Haar filter bank branches H 0 (z) and H 1 (z) which work as low-pass and high-pass filters, respectively are transformed into their 2-D counterparts H 0 (z 1 ,z 2 ) and H 1 (z 1 ,z 2 ) by applying a circular-support version of the digital spectral transformation (DST). The designed 2-D wavelet filter bank is realized in a separable architecture. The proposed architecture is simulated using Matlab program to measure the deflection ratio (DR) of the high frequency coefficient to evaluate its performance and compare it with the performance of the classical 2-D wavelet architecture. The correlation factor between the input and reconstructed images is also calculated for both architectures. The FPGA (Spartan-3E) Kit is used to implement the resulting architecture in a multiplier-less manner and to calculate the die area and the critical path or maximum frequency of operation. The achieved multiplier-less implementation takes a very small area from FPGA Kit (the die area in 3-level wavelet decomposition takes 300 slices with 7% occupation ratio only at a maximum frequency of 198.447 MHz).

Article
Wavelet-based Hybrid Learning Framework for Motor Imagery Classification

Z. T. Al-Qaysi, Ali Al-Saegh, Ahmed Faeq Hussein, M. A. Ahmed

Pages: 47-56

PDF Full Text
Abstract

Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the Amor mother wavelet function has outperformed the results of state-of-the-art studies.

Article
Series and Parallel Arc Fault Detection Based on Discrete Wavelet vs. FFT Techniques

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. Khudair

Pages: 38-47

PDF Full Text
Abstract

Arc problems are most commonly caused by electrical difficulties such as worn cables and improper connections. Electrical fires are caused by arc faults, which generate tremendous temperatures and discharge molten metal. Every year, flames of this nature inflict a great lot of devastation and loss. A novel approach for identifying residential series and parallel arc faults is presented in this study. To begin, arc faults in series and parallel are simulated using a suitable simulation arc model. The fault characteristics are then recovered using a signal processing technique based on the fault detection technique called Discrete Wavelet Transform (DWT), which is built in MATLAB/Simulink. Then came db2, and one level was discovered for obtaining arc-fault features. The suitable mother and level of wavelet transform should be used, and try to compare results with conventional methods (FFT-Fast Fourier Transform). MATLAB was used to build and simulate arc-fault models with these techniques.

Article
Speed Control of BLDC Motor Based on Recurrent Wavelet Neural Network

Adel A. Obed, Ameer L. Saleh

Pages: 118-129

PDF Full Text
Abstract

In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.

Article
Series and Parallel Arc Fault Detection in Electrical Buildings Based on Discrete Wavelet Theory

Elaf Abed Saeed, Khalid M. Abdulhassan, Osama Y. K. Al-Atbee

Pages: 94-101

PDF Full Text
Abstract

Electrical issues such as old wires and faulty connections are the most common causes of arc faults. Arc faults cause electrical fires by generating high temperatures and discharging molten metal. Every year, such fires cause a considerable deal of destruction and loss. This paper proposes a new method for detecting residential series and parallel arc faults. A simulation model for the arc is employed to simulate the arc faults in series and parallel circuits. The fault features are then retrieved using a signal processing approach called Discrete Wavelet Transform (DWT) designed in MATLAB/Simulink based on the fault detection algorithm. Then db2 and one level were found appropriate mother and level of wavelet transform for extracting arc-fault features. MATLAB Simulink was used to build and simulate the arc-fault model.

Article
Gray Scale Image Hiding Using Wavelet Packet Transform

Abbas A. Jasim

Pages: 51-59

PDF Full Text
Abstract

This work implying the design of hiding system that hides a gray scale image into another gray scale image using two-dimensional wavelet packet transform. The proposed hiding scheme uses Wavelet Packet Transform (WPT) to embed data elements of the secret image in different frequency bands of the cover image. The data elements of the secrete image are placed within DWT subspaces after simple treatment in order to reduce its significance on the resulting image and to increase security. The resulting image (the cover image within which the secret image is hidden) is called stego_image. Stego_image is closely related to the cover image and does not show any details of the secret image. The proposed system achieves perfect reconstruction of the secret image. All programs in this work is written by MATLAB 7.

Article
A Modified Wavenet-Based Link Status Predictor for Computer Networks

Jassim M. Abdul-Jabbar, Omar A. Hazim

Pages: 48-57

PDF Full Text
Abstract

In this paper, a modified wavelet neural network (WNN) (or wavenet)-based predictor is introduced to predict link status (congestion with load indication) of each link in the computer network. On the contrary of previous wavenet-based predictors, the proposed modified wavenet-based link state predictor (MWBLSP) generates two indicating outputs for congestion and load status of each link based on th e premeasured power burden (square values) of utilization on each link in the previous time intervals. Fortunately, WNNs possess all learning and generalization capabilities of traditional neural networks. In addition, the ability of such WNNs are efficiently enhanced by the local characteristics of wavelet functions to deal with sudden changes and burst network load. The use of power burden utilization at the predictor input supports some non-linear distri butions of the predicted values in a more efficient manner. The proposed MWBLSP pre dictor can be used in the context of active congestion control and link load balancing techniques to improve the performance of all links in the network with best utilization of network resources.

Article
Color Image Hiding In Cover Speech Signal By Using Multi-resolution Discrete Wavelet Transform

Lecturer Dr. Samir J.AL- Muraab, Asst. lecturer Haider I. AL-Mayaly

Pages: 28-37

PDF Full Text
Abstract

Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, security, and copyright. The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. Digital audio provides a suitable cover for high-throughput steganography. In this paper a high robustness system against the attackers in hiding of color images is presented. We used the multi-resolution discrete wavelet transform in hiding process. The JPEG format type for color images and WAV format for speech cover signal that used in test of system. Programs and graphics are executed by using MATLAB version 6.5 programs.

Article
ECG SIGNAL RECOGNITION BASED ON WAVELET TRANSFORM USING NEURAL NETWORKS AND FUZZY SYSTEMS

HAIDER MEHDI ABDUL-RIDHA, ABDULADHEM A. ALI

Pages: 86-91

PDF Full Text
Abstract

This work presents aneural and fuzzy based ECG signal recognition system based on wavelet transform. The suitable coefficients that can be used as a feature for each fuzzy network or neural network is found using a proposed best basis technique. Using the proposed best bases reduces the dimension of the input vector and hence reduces the complexity of the classifier. The fuzzy network and the neural network parameters are learned using back propagation algorithm.

Article
Restoration of Noisy Blurred Images Using MFPIA and Discrete Wavelet Transform

Dunia S. Tahir

Pages: 1-15

PDF Full Text
Abstract

In this paper, image deblurring and denoising are presented. The used images were blurred either with Gaussian or motion blur and corrupted either by Gaussian noise or by salt & pepper noise. In our algorithm, the modified fixed-phase iterative algorithm (MFPIA) is used to reduce the blur. Then a discrete wavelet transform is used to divide the image into two parts. The first part represents the approximation coefficients. While the second part represents the detail coefficients, that a noise is removed by using the BayesShrink wavelet thresholding method.

Article
SYMBOLIC ANALYSIS OF ELECTRONIC CIRCUITS USING WAVELET TRANSFORM

A. A. Al-Itaby, Prof. F. M. Al-Naima, A. A. Al-Itaby, Prof. F. M. Al-Naima

Pages: 65-78

PDF Full Text
Abstract

In recent years, symbolic analysis has become a well-established technique in circuit analysis and design. The symbolic expression of network characteristics offers convenience for frequency response analysis, sensitivity computation, and fault diagnosis. The aim of the paper is to present a method for symbolic analysis that depends on the use of the wavelet transform (WT) as a tool to accelerate the solution of the problem as compared with the numerical interpolation method that is based on the use of the fast Fourier transform (FFT).

Article
A ROBUST WAVELET BASED WATERMARKING SCHEME FOR DIGITAL AUDIO

Ayad Ibrahim Abdulsada

Pages: 65-72

PDF Full Text
Abstract

In this paper, a robust wavelet based watermarking scheme has been proposed for digital audio. A single bit is embedded in the approximation part of each frame. The watermark bits are embedded in two subsets of indexes randomly generated by using two keys for security purpose. The embedding process is done in adaptively fashion according to the mean of each approximation part. The detection of watermark does not depend on the original audio. To measure the robustness of the algorithm, different signal processing operations have been applied on the watermarked audio. Several experimental results have been conducted to illustrate the robustness and efficiency of the proposed watermarked audio scheme.

Article
SYMBOLIC ANALYSIS OF ELECTRONIC CIRCUITS USING WAVELET TRANSFORM

A. A. Al-Itaby, Prof. F. M. Al-Naima, A. A. Al-Itaby, Prof. F. M. Al-Naima

Pages: 1-14

PDF Full Text
Abstract

In recent years, symbolic analysis has become a well-established technique in circuit analysis and design. The symbolic expression of network characteristics offers convenience for frequency response analysis, sensitivity computation, and fault diagnosis. The aim of the paper is to present a method for symbolic analysis that depends on the use of the wavelet transform (WT) as a tool to accelerate the solution of the problem as compared with the numerical interpolation method that is based on the use of the fast Fourier transform (FFT).

Article
Hybrid and Invisible Digital Image Watermarking Technique Using IWT-DCT and Hopfield Neural Network

Ayoub Taheri

Pages: 18-24

PDF Full Text
Abstract

According to the characteristic of HVS (Human Visual System) and the association memory ability of neural network, an adaptive image watermarking algorithm based on neural network is proposed invisible image watermarking is secret embedding scheme for hiding of secret image into cover image file and the purpose of invisible watermarking is copyrights protection. Wavelet transformation-based image watermarking techniques provide better robustness for statistical attacks in comparison to Discrete Cosine Transform domain-based image watermarking. The joined method of IWT (Integer Wavelet Transform) and DCT (Discrete Cosine Transform) gives benefits of the two procedures. The IWT have impediment of portion misfortune in embedding which increments mean square estimate as SIM and results diminishing PSNR. The capacity of drawing in is improved by pretreatment and re-treatment of image scrambling and Hopfield neural network. The proposed algorithm presents hybrid integer wavelet transform and discrete cosine transform based watermarking technique to obtain increased imperceptibility and robustness compared to IWT-DCT based watermarking technique. The proposed watermarking technique reduces the fractional loss compared to DWT based watermarking.

Article
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 38-45

PDF Full Text
Abstract

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.

Article
Grid-Forming and Grid-Following Based Microgrid Inverters Control

Ali M. Jasim, Basil H. Jasim

Pages: 111-131

PDF Full Text
Abstract

Microgrids (ℳ-grids) can be thought of as a small-scale electrical network comprised of a mix of Distributed Generation (DG) resources, storage devices, and a variety of load species. It provides communities with a stable, secure, and renewable energy supply in either off-grid (grid-forming) or on-grid (grid-following) mode. In this work, a control strategy of coordinated power management for a Low Voltage (LV) ℳ-grid with integration of solar Photovoltaic (PV), Battery Energy Storage System (BESS) and three phase loads operated autonomously or connected to the utility grid has been created and analyzed in the Matlab Simulink environment. The main goal expressed here is to achieve the following points: (i) grid following, grid forming modes, and resynchronization mode between them, (ii) Maximum Power Point Tracking (MPPT) from solar PV using fuzzy logic technique, and active power regulator based boost converter using a Proportional Integral (PI) controller is activated when a curtailment operation is required, (iii) ℳ-grid imbalance compensation (negative sequence) due to large single-phase load is activated, and (iv) detection and diagnosis the fault types using Discrete Wavelet Transform (DWT). Under the influence of irradiance fluctuation on solar plant, the proposed control technique demonstrates how the adopted system works in grid- following mode (PQ control), grid- formation, and grid resynchronization to seamlessly connect the ℳ-grid with the main distribution system. In this system, a power curtailment management system is introduced in the event of a significant reduction in load, allowing the control strategy to be switched from MPPT to PQ control, permitting the BESS to absorb excess power. Also, in grid-following mode, the BESS's imbalance compensation mechanism helps to reduce the negative sequence voltage that occurs at the Point of Common Coupling (PCC) bus as a result of an imbalance in the grid's power supply. In addition to the features described above, this system made use of DWT to detect and diagnose various fault conditions.

Article
Vector Quantization Techniques For Partial Encryption of Wavelet-based Compressed Digital Images

Dr. Hameed A. Younis, Dr. Turki Y. Abdalla, Dr. Abdulkareem Y. Abdalla

Pages: 74-89

PDF Full Text
Abstract

The use of image communication has increased in recent years. In this paper, new partial encryption schemes are used to encrypt only part of the compressed data. Only 6.25-25% of the original data is encrypted for four different images, resulting in a significant reduction in encryption and decryption time. In the compression step, an advanced clustering analysis technique (Fuzzy C-means (FCM)) is used. In the encryption step, the permutation cipher is used. The effect of number of different clusters is studied. The proposed partial encryption schemes are fast and secure, and do not reduce the compression performance of the underlying selected compression methods as shown in experimental results and conclusion.

Article
Short Circuit Faults Identification and Localization in IEEE 34 Nodes Distribution Feeder Based on the Theory of Wavelets

Sara J. Authafa, Khalid M. Abdul-Hassan

Pages: 65-79

PDF Full Text
Abstract

In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.

Article
Automated Brain Tumor Detection Based on Feature Extraction from The MRI Brain Image Analysis

Ban Mohammed Abd Alreda, Hussain Kareem Khalif, Thamir Rashed Saeid

Pages: 58-67

PDF Full Text
Abstract

The brain tumors are among the common deadly illness that requires early, reliable detection techniques, current identification, and imaging methods that depend on the decisions of neuro-specialists and radiologists who can make possible human error. This takes time to manually identify a brain tumor. This work aims to design an intelligent model capable of diagnosing and predicting the severity of magnetic resonance imaging (MRI) brain tumors to make an accurate decision. The main contribution is achieved by adopting a new multiclass classifier approach based on a collected real database with new proposed features that reflect the precise situation of the disease. In this work, two artificial neural networks (ANNs) methods namely, Feed Forward Back Propagation neural network (FFBPNN) and support vector machine (SVM), used to expectations the level of brain tumors. The results show that the prediction result by the (FFBPN) network will be better than the other method in time record to reach an automatic classification with classification accuracy was 97% for 3-class which is considered excellent accuracy. The software simulation and results of this work have been implemented via MATLAB (R2012b).

1 - 20 of 20 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.