Among all control methods for induction motor drives, Direct Torque Control (DTC) seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysterics controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, and the problems related to its implementation, especially the torque ripple and the possible improvements to reduce this torque ripple by using a proposed fuzzy based duty cycle controller. The effectiveness of the duty ratio method was verified by simulation using Matlab/Simulink software package. The results are compared with that of the traditional DTC models.
Some engineering applications requires constant engine speed such as power generators, production lines ..etc. The current paper focuses on adding a new closed loop based on engine torque. Load cells can be used to measure the torque of load applied , the electrical signal is properly handled to manipulate a special fuel actuator to compensate for the reduction in engine speed. The speed loop still acts as the most outer closed loop. This method leads to rapid speed compensation and lead control action.
Five-phase machine employment in electric drive system is expanding rapidly in many applications due to several advantages that they present when compared with their three-phase complements. Synchronous reluctance machines(SynRM) are considered as a proposed alternative to permanent magnet machine in the automotive industry because the volatilities in the permanent magnet price, and a proposed alternative for induction motor because they have no field excitation windings in the rotor, SyRM rely on high reluctance torque thus no needing for magnetic material in the structure of rotor. This paper presents dynamic simulation of five phase synchronous reluctance motor fed by five phase voltage source inverter based on mathematical modeling. Sinusoidal pulse width modulation (SPWM) technique is used to generate the pulses for inverter. The theory of reference frame has been used to transform five-phase SynRM voltage equations for simplicity and in order to eliminate the angular dependency of the inductances. The torque in terms of phase currents is then attained using the known magnetic co-energy method, then the results obtained are typical.
This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.
In this paper, high tracking performance control structure for rigid robot manipulator is proposed. PD-like Sugano type fuzzy system is used as a main controller, while fuzzy-neural network (FNN) is used as a compensator for uncertainties by minimizing suitable function. The output of FNN is added to the reference trajectories to modify input error space, so that the system robust to any change in system parameters. The proposed structure is simulated and compared with computed torque controller. The simulation study has showed the validity of our structure, also showed its superiority to computed torque controller.
Swimming performance underlies the biomechanical properties and functional morphology of fish fins. In this article, a pair of concave fin has been suggested, which is inspired from Labriform-mode Swimming fish. First, three concave fins with different sizes are proposed in order to choose the optimum size. All three fins have the same length but with different surface areas, such that each fin has an aspect ratio different from the others. Next, the complete design of the robot is suggested, the complete design of the body and pectoral fins were subjected to computational fluid dynamics (CFD) analysis to show the validity of the proposed model. Finally, the physical model is suggested and provided with 3D printer of Polylactic Acid (PLA) with a density of 1240 kg/ m3. The swimming robot fins have been examined by CFD analysis provided by Solidworks® to evaluate the highest thrust and lowest drag forces. The result showed that the optimum fin is the one with the lowest aspect ratio fin produces the highest drag, whereas the highest aspect ratio fin gives the lowest drag and thrust, therefore; a value of aspect ratio in between these two cases is chosen. While other types of examinations are based on motion analysis of the 3D design, the required motor torque is calculated in order to select a suitable servomotor for this purpose, which a HS-5086WP waterproof servomotor can achieve the calculated torque.
In this paper, three phase induction motor (IM) has been modelled in stationary reference frame and controlled by using direct torque control (DTC) method with constant V/F ratio. The obtained drive system consists of nine nonlinear first order differential equations. The numerical analysis is used to investigate the system behavior due to control parameter change. The integral gain of speed loop is used as bifurcation parameter to test the system dynamics. The simulation results show that the system has period-doubling route to chaos, period-1, period-2, period-4, and then the system gets chaotic oscillation. A specific value of the parameter range shows that the system has very strong randomness and a high degree of disturbance
The control problem for a class of a nonlinear systems that contain the coupling of unmeasured states and unknown parameters is addressed. The system actuation is assumed to suffer from unknown dead zone nonlinearity. The parameters bounds of the unknown dead zone to be considered are unknown. Adaptive sliding mode controller, unmeasured states observer, and unknown parameters estimators are suggested such that global stability is achieved. Simulation for a single link mechanical system with unknown dead zone and friction torque is implemented for proving the efficacy of the suggested scheme.
In this paper, a model of PI-speed control current-driven induction motor based on indirect field oriented control (IFOC) is addressed. To assess the complex dynamics of a system, different dynamical properties, such as stability of equilibrium points, bifurcation diagrams, Lyapunov exponents spectrum, and phase portraits are characterized. It is found that the induction motor model exhibits chaotic behaviors when its parameters fall into a certain region. Small variations of PI parameters and load torque affect the dynamics and stability of this electric machine. A chaotic attractor has been observed and the speed of the motor oscillates chaotically. Numerical simulation results are validating the theoretical analysis.
In this paper a fully neural network-based structure have been proposed to control speeds of rolling stands of a steel rolling mill. The structure has property of controlling the motors speed such that the loop height between each successive stands tracks the required height reference. Synchronization between these stands is also maintained so that the metal flow rate from first stand to the last stand is kept constant. This structure is robust against the disturbance effects such as, torque loading, plant parameter change... etc. The results reveal performance of the structure as a comparison with the conventional control method for a practical worksheet data.
The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.
This paper suggests the use of the traditional proportional-integral-derivative (PID) controller to control the speed of multi Permanent Magnet Synchronous Motors (PMSMs). The PMSMs are commonly used in industrial applications due to their high steady state torque, high power, high efficiency, low inertia and simple control of their drives compared to the other motors drives. In the present study a mathematical model of three phase four poles PMSM is given and simulated. The closed loop speed control for this type of motors with voltage source inverter and abc to dq blocks are designed. The multi (Master/Slaves approach) method is proposed for PMSMs. Mathwork's Matlab/Simulink software package is selected to implement this model. The simulation results have illustrated that this control method can control the multi PMSMs successfully and give better performance.
This paper presents a low-cost Brushless DC (BLDC) motor drive system with fewer switches. BLDC motors are widely utilized in variable speed drives and industrial applications due to their high efficiency, high power factor, high torque, low maintenance, and ease of control. The proposed control strategy for robust speed control is dependent on two feedback signals which are speed sensor loop which is regulated by Sliding Mode Controller (SMC) and current sensor loop which is regulated by Proportional-Integral (PI) for boosting the drive system adaptability. In this work, the BLDC motor is driven by a four-switch three-phase inverter emulating a three-phase six switch inverter, to reduce switching losses with a low complex control strategy. In order to reach a robust performance of the proposed control strategy, the Lévy Flight Distribution (LFD) technique is used to tune the gains of PI and SMC parameters. The Integral Time Absolute Error (ITAE) is used as a fitness function. The simulation results show the SMC with LFD technique has superiority over conventional SMC and optimization PI controller in terms of fast-tracking to the desired value, reduction speed error to the zero value, and low overshoot under sudden change conditions.
Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management optimization problem, which consists of the cost function and its constraints. The cost function describes the required control objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's energy converters, which are represented by the torque of the vehicle components.