The aim of this paper is to design and evaluate hop calculations and system performance for line of sight (LOS) radio relay links utilizing a simplified proposed procedure. Such a procedure is simulated for the determination of both hop calculations and system performance. The practical procedure of this paper has been ordered in a manner to solve up to 95% of the hop design problems encountered in practice. Two examples with different specifications and different required outage time are examined to fulfill the Committee Consultative International Radio (CCIR) recommendations.
Linearization sensors characteristics becomes very interest field for researchers due to the importance in enhance the system performance, measurement accuracy, system design simplicity (hardware and software), reduce system cost, ..etc. in this paper, two approaches has been introduced in order to linearize the sensor characteristics; first is signal condition circuit based on lock up table (LUT) which this method performed for linearize NTC sensor characteristic. Second is ratiometric measurement equation which this method performed for linearize LVDT sensor characteristic. The proposed methods has been simulated by MATLAB, and then implemented by using Anadigm AN221E04 Field Programmable Analog Array (FPAA) development kit which several experiments performed in order to improve the performance of these approaches.
In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.
An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.
Recently, numerous researches have emphasized the importance of professional inspection and repair in case of suspected faults in Photovoltaic (PV) systems. By leveraging electrical and environmental features, many machine learning models can provide valuable insights into the operational status of PV systems. In this study, different machine learning models for PV fault detection using a simulated 0.25MW PV power system were developed and evaluated. The training and testing datasets encompassed normal operation and various fault scenarios, including string-to-string, on-string, and string-to-ground faults. Multiple electrical and environmental variables were measured and exploited as features, such as current, voltage, power, temperature, and irradiance. Four algorithms (Tree, LDA, SVM, and ANN) were tested using 5-fold cross-validation to identify errors in the PV system. The performance evaluation of the models revealed promising results, with all algorithms demonstrating high accuracy. The Tree and LDA algorithms exhibited the best performance, achieving accuracies of 99.544% on the training data and 98.058% on the testing data. LDA achieved perfect accuracy (100%) on the testing data, while SVM and ANN achieved 95.145% and 89.320% accuracy, respectively. These findings underscore the potential of machine learning algorithms in accurately detecting and classifying various types of PV faults. .
The tremendous development in the field of communications is derived from the increasing demand for fast transmission and processing of huge amounts of data. The non-orthogonal multiple access (NOMA) system was proposed to increase spectral efficiency (SE) and improve energy efficiency (EE) as well as contribute to preserving the environment and reducing pollution. In the NOMA system, a user may be considered as a relay to the others that support the coverage area based on adopting the reuse of the frequency technique. This cooperation enhances the spectral efficiency, however, in the cell, there are other users that may affect the spectral allocation that should be taken into consideration. Therefore, this paper is conducted to analyze the case when three users are available to play as relies upon. The analyses are performed in terms of the transmitted power allocation in a fair manner, and the system's performance is analyzed using the achievable data rates and the probability of an outage. The results showed an improvement in throughputs for the second and third users, as its value ranged from 7.57 bps/Hz to 12.55 bps/Hz for the second user and a quasi-fixed value of 1,292 bps/Hz for the third user at the transmitted power ranging from zero to 30 dBm.
This work concerns creating a monitoring system for a smart hospital using Raspberry Pi to measure vital signs. The readings are continually sent to central monitoring units outside the room instead of being beside the patients, to ensure less contacting between the medical staff and patients, also the cloud is used for those who leave the hospital, as the design can track on their medical cases. Data presentation and analysis were accomplished by the LabVIEW program. A Graphical User Interface (GUI) has been created by the Virtual-Instrument (VI) of this program that offer real-time access to monitor patients’ measurements. If unhealthy states are detected, the design triggers alerts and sends SMS message to the doctor. Furthermore, the clinicians can scan a QR code (which is assigned to each patient individually) to access its real-time measurements. The system also utilizes Electrocardiography (ECG) to detect abnormalities and identify specific heart diseases based on its extracted parameters to encourage patients to seek timely medical attention, while aiding doctors in making well-informed decisions. To evaluate the system’s performance, it is tested in the hospital on many patients of different ages and diseases as well. According to the results, the accuracy measurement of SpO2 was about 98.39%, 97.7% for (heart rate) and 98.7% for body temperature. This shows that the system can offer many patients receiving health services from various facilities, and it ensures efficient data management, access control, real-time monitoring, and secure patient information aligning with healthcare standards.
Many assistive devices have been developed for visually impaired (VI) person in recent years which solve the problems that face VI person in his/her daily moving. Most of researches try to solve the obstacle avoidance or navigation problem, and others focus on assisting VI person to recognize the objects in his/her surrounding environment. However, a few of them integrate both navigation and recognition capabilities in their system. According to above needs, an assistive device is presented in this paper that achieves both capabilities to aid the VI person to (1) navigate safely from his/her current location (pose) to a desired destination in unknown environment, and (2) recognize his/her surrounding objects. The proposed system consists of the low cost sensors Neato XV-11 LiDAR, ultrasonic sensor, Raspberry pi camera (CameraPi), which are hold on a white cane. Hector SLAM based on 2D LiDAR is used to construct a 2D-map of unfamiliar environment. While A* path planning algorithm generates an optimal path on the given 2D hector map. Moreover, the temporary obstacles in front of VI person are detected by an ultrasonic sensor. The recognition system based on Convolution Neural Networks (CNN) technique is implemented in this work to predict object class besides enhance the navigation system. The interaction between the VI person and an assistive system is done by audio module (speech recognition and speech synthesis). The proposed system performance has been evaluated on various real-time experiments conducted in indoor scenarios, showing the efficiency of the proposed system.