Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for spectral-response

Article
Numerical Analysis of Thermal Dependence of the Spectral Response of Polymer Optical Fiber Bragg Gratings

Hisham K. Hisham

Pages: 85-95

PDF Full Text
Abstract

The thermal dependence of the spectral response (i.e. transmission, reflection and time delay ( τ r ) responses) of uniform polymer optical fiber (POF) Bragg gratings has been investigated. In addition to the temperature dependence, the effects of grating strength (kL g ) and fiber index modulation ( ∆ n) have been investigated. Besides high capability of tunable wavelength due to the unique large and negative thermo-optic coefficient of POF, the spectral response for POF Bragg gratings show high stability and larger spectrum bandwidth with temperature variation compare with the silica optical fiber (SOF) Bragg gratings, especially with the increase of the kL g value. It was found that by increasing kL g , the peak reflectance value increases and the bandwidth of the Bragg reflector become narrower. Also it’s shown by increasing the kL g value, τ r deceasing significantly and reach its minimum value at the designed wavelength ( λ B ). Furthermore, the τ r for POF Bragg gratings is less than that for SOF Bragg gratings at the same value of kL g . Also it’s found that the peak reflectivity value increases to around 60% when the ∆ n value increases from 1 ˣ 10 -4 to 5 ˣ 10 -4 .

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.