Cover
Vol. 12 No. 1 (2016)

Published: June 30, 2016

Pages: 85-95

Original Article

Numerical Analysis of Thermal Dependence of the Spectral Response of Polymer Optical Fiber Bragg Gratings

Abstract

The thermal dependence of the spectral response (i.e. transmission, reflection and time delay ( τ r ) responses) of uniform polymer optical fiber (POF) Bragg gratings has been investigated. In addition to the temperature dependence, the effects of grating strength (kL g ) and fiber index modulation ( ∆ n) have been investigated. Besides high capability of tunable wavelength due to the unique large and negative thermo-optic coefficient of POF, the spectral response for POF Bragg gratings show high stability and larger spectrum bandwidth with temperature variation compare with the silica optical fiber (SOF) Bragg gratings, especially with the increase of the kL g value. It was found that by increasing kL g , the peak reflectance value increases and the bandwidth of the Bragg reflector become narrower. Also it’s shown by increasing the kL g value, τ r deceasing significantly and reach its minimum value at the designed wavelength ( λ B ). Furthermore, the τ r for POF Bragg gratings is less than that for SOF Bragg gratings at the same value of kL g . Also it’s found that the peak reflectivity value increases to around 60% when the ∆ n value increases from 1 ˣ 10 -4 to 5 ˣ 10 -4 .

References

  1. D. Heo, D. -J. Shin, I. -K. Yun, J. -S. Lee, J. Jeong, J. Lee, “BLS polarization-induced performance degradation in WDM–PON systems based on wavelength-locked FPLDs,” Opt. Commun,. vol. 283, pp. 258–261, 2010.
  2. M. Li, W. Hong, X. Zhang, W. Li, D. Huang, “Investigation of a high-speed optical FSK scheme for WDM-PON applications with centralized lightwave source,” Opt. Commun, vol. 283, pp. 1251–1260, 2010.
  3. F. Y. Shih, C. H. Yeh, C. W. Chow, C. H. Wang, S. Chi, “Utilization of self-injection Fabry–Perot laser diode for long-reach WDM-PON,” Optical Fiber Technology , vol.16, pp. 46–49, 2010.
  4. L. S. Yan, A. Yi, W. Pan, B. Luo, “A Simple Demodulation Method for FBG Temperature Sensors Using a Narrow Band Wavelength Tunable DFB Laser,” IEEE photon Tech. Lett. , vol. 22, pp. 1391- 1393, 2010.
  5. R. A. Vazquez-Sanchez, E. A. Kuzin, C. M. Anzueto, G. C. Righini, S. V. Miridonov, “Radio-frequency interrogation of a fiber Bragg grating sensor in the configuration of a fiber laser with external cavities,” Optik , vol. 121, pp. 2040–2043, 2010.
  6. F. N. Timofeev, , G. Simin, M. Shatalov, S. R. Kashyap, “Experimental and theoretical study of high temperature-stability and lowchirp 1.55 micron semiconductor laser with an external fiber grating,” Fiber Integr. Opt. , vol. 19, pp. 327–354, 2000.
  7. J. –R. Lee, S. Y. Chong, C. –Y. Yun, D. –J. Yoon, “A lasing wavelength stabilized simultaneous multipoint acoustic sensing system using pressure-coupled fiber Bragg vol. 49, pp. 110–120, 2011.
  8. Z. C. Zhuo, B. S. Ham, “A temperature442–444, 2009.
  9. H. Liu, H. Liu, G. Peng, T. W. Whitbread, “Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE photon Tech. Lett. , vol. 17, pp. 411–413, 2005.
  10. H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Polymer optical fiber Bragg gratings based fiber laser,” Opt. Commun. , vol. 266, pp. 132–135, 2006.
  11. H. Y. Liu, H. B. Liu, G. D. Peng, “Tensile strain characterization of polymer optical fiber Bragg gratings,” Opt. Commun. , vol. 251, pp. 37–43, 2005.
  12. A. Othonos, K. Kalli, “Fiber Bragg GratingFundamentals and Applications Telecommunications and Sensing,” Artech House, Boston, 1999.
  13. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. , vol. 6, pp. 54–68, 2000.
  14. H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. , vol. 204, pp. 151–156, 2002.
  15. G. Jeong, J. –H. Lee, M. Y. Park, C. Y. Kim, S. –H. Che, W. Lee, B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE photon Tech. Lett. , vol. 18, pp. 2102–2104, 2006.
  16. Y. –O. Noh, H. –J. Lee, J. J. Ju, M. –S. Kim, S. H. Oh, M. –C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express , vol. 16, pp. 18194–18201, 2008.
  17. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herhold-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sorensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun., vol. 284, pp. 176–182, 2011.
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. , vol. 15, pp. 1277–1294, 1997.