Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for pneumatic-artificial-muscle

Article
The Design and Implementation of a Single-Actuator Soft Robot Arm for Lower Back Pain Reduction

Alaa Al-Ibadi

Pages: 25-29

PDF Full Text
Abstract

This paper presents a simple and fast design and implementation for a soft robot arm. The proposed continuum arm has been built by a single self-bending contraction actuator (SBCA) with two-fingers soft gripper. Because of the valuable advantages of the pneumatic artificial muscle (PAM), this continuum arm provides a high degree of safety to individuals. The proposed soft robot arm has a bending behaviour of more 180° at 3.5 kg, while, its weight is 0.7 kg. Moreover, it is designed to assist the people by reducing the number of backbends and that leads to a decrease in the possibility of lower back pain.

Article
A Review of Design and Modeling of Pneumatic Artificial Muscle

Wafaa Al-Mayahi, Hassanin Al-Fahaam

Pages: 122-136

PDF Full Text
Abstract

Soft robots, which are often considered safer than rigid robots when interacting with humans due to the reduced risk of injury, have found utility in various medical and industrial fields. Pneumatic artificial muscles (PAMs), one of the most widely used soft actuators, have proven their efficiency in numerous applications, including prosthetic and rehabilitation robots. PAMs are lightweight, responsive, precise, and capable of delivering a high force-to-weight ratio. Their structure comprises a flexible, inflatable membrane reinforced with fibrous twine and fitted with gas-sealing fittings. For the optimal design and integration of these into control systems, it is crucial to develop mathematical models that accurately represent their functioning mechanisms. This paper introduces a general concept of PAM’s construction, its various types, and operational mechanisms, along with its key benefits and drawbacks, and also reviews the most common modeling techniques for PAM representation. Most models are grounded in PAM architecture, aiming to calculate the actuator’s force across its full axis by correlating pressure, length, and other parameters that influence actuator strength.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.